

    
      
          
            
  


Overview of mvlearn [https://github.com/mvlearn/mvlearn]

mvlearn is a Python module for multiview learning.


Motivation

mvlearn aims to serve as a community-driven open-source software package that offers reference implementations for algorithms and methods related to multiview learning (machine learning in settings where there are multiple incommensurate views or feature sets for each sample). It brings together the most widely-used tools in this setting with a standardized scikit-learn like API, well tested code and high-quality documentation. Doing so we aim to facilitate application, extension, comparison of methods, and offer a foundation for research into new multiview algorithms. We welcome new contributors and the addition of methods with proven efficacy and current use.




Python

Python is a powerful programming language that allows concise expressions of network
algorithms.  Python has a vibrant and growing ecosystem of packages that
mvlearn uses to provide more features such as numerical linear algebra. In order to make the most out of mvlearn you will want to know how
to write basic programs in Python.  Among the many guides to Python, we
recommend the Python documentation [https://docs.python.org/3/].

Currently, mvlearn is supported for Python 3.6, 3.7, and 3.8.




Free software

mvlearn is free software; you can redistribute it and/or modify it under the
terms of the Apache-2.0.  We welcome contributions.
Join us on GitHub [https://github.com/mvlearn/mvlearn].




History

mvlearn was developed during the end of 2019 by Richard Guo, Ronan Perry, Gavin Mischler, Theo Lee, Alexander Chang, Arman Koul, and Cameron Franz, a team out of the Johns Hopkins University NeuroData group.






Documentation

mvlearn is a Python package of multiview learning tools.



	Install

	Tutorials

	Reference

	Contributing to mvlearn

	Changelog

	License






Useful Links


	mvlearn @ GitHub [https://github.com/mvlearn/mvlearn]

	mvlearn @ PyPI [https://pypi.org/project/mvlearn/]

	Issue Tracker [https://github.com/mvlearn/mvlearn/issues]








Indices and tables


	Index


	Search Page








          

      

      

    

  

    
      
          
            
  


Install

mvlearn can be installed by using pip, GitHub, or through the conda-forge
channel into an existing conda environment.

IMPORTANT NOTE: mvlearn has an optional dependency to torch
and tqdm, so special instructions must be followed to include these
optional dependencies in the installation (if you do not have those packages already)
in order to access all the features within mvlearn.
More details can be found in Including optional torch dependencies for full functionality.


Installing the released version with pip

Below we assume you have the default Python3 environment already configured on
your computer and you intend to install mvlearn inside of it.  If you want
to create and work with Python virtual environments, please follow instructions
on venv [https://docs.python.org/3/library/venv.html] and virtual
environments [http://docs.python-guide.org/en/latest/dev/virtualenvs/].

First, make sure you have the latest version of pip3 (the Python3 package manager)
installed. If you do not, refer to the Pip documentation [https://pip.pypa.io/en/stable/installing/] and install pip3 first.

Install the current release of mvlearn with pip3:

$ pip3 install mvlearn





To upgrade to a newer release use the --upgrade flag:

$ pip3 install --upgrade mvlearn





If you do not have permission to install software systemwide, you can
install into your user directory using the --user flag:

$ pip3 install --user mvlearn





Alternatively, you can manually download mvlearn from
GitHub [https://github.com/mvlearn/mvlearn]  or
PyPI [https://pypi.org/project/mvlearn/].
To install one of these versions, unpack it and run the following from the
top-level source directory using the Terminal:

$ pip3 install -e .





This will install mvlearn and the required dependencies (see below).


Including optional torch dependencies for full functionality

Due to the size of the torch dependency, it is an optional installation.
Because it, and tqdm, are only used by Deep CCA and SplitAE, they are not
included in the basic mvlearn download.
If you wish to use functionality associated with these dependencies (Deep CCA
and SplitAE), you must install additional dependencies. You can install
them independently, or to install everything from PyPI, simply call:

$ pip3 install mvlearn[torch]





To upgrade the package and torch requirements:

$ pip3 install --upgrade mvlearn[torch]





If you have the package locally, from the top level folder call:

$ pip3 install -e .[torch]










Installing the released version with conda-forge

Here, we assume you have created a conda environment with one of the
accepted python versions, and you intend to install the full mvlearn
release into it (with torch dependencies included). For more information
about using conda-forge feedstocks, see the about page [https://conda-forge.org/],
or the mvlearn feedstock [https://github.com/conda-forge/mvlearn-feedstock].

To install mvlearn with conda, run:

$ conda install -c conda-forge mvlearn





To list all versions of mvlearn available on your platform, use:

$ conda search mvlearn --channel conda-forge








Python package dependencies

mvlearn requires the following packages:


	graspy >=0.1.1


	matplotlib >=3.0.0


	numpy >=1.17.0


	pandas >=0.25.0


	scikit-learn >=0.19.1


	scipy >=1.1.0


	seaborn >=0.9.0


	joblib >=0.11


	python-picard >= 0.4




with optional dependencies


	torch >=1.1.0


	tqdm




Currently, mvlearn is supported for Python 3.6, 3.7, and 3.8.




Hardware requirements

The mvlearn package requires only a standard computer with enough RAM to support the in-memory operations and free memory to install required packages.




OS Requirements

This package is supported for Linux and macOS and can also be run on Windows machines.




Testing

mvlearn uses the Python pytest testing package.  If you don't already have
that package installed, follow the directions on the pytest homepage [https://docs.pytest.org/en/latest/].







          

      

      

    

  

    
      
          
            
  


Tutorials


Clustering

The following tutorials demonstrate the effectiveness of clustering algorithms designed specifically
for multiview datasets.



	Multi-view KMeans

	Assessing the Conditional Independence Views Requirement of Multi-view KMeans

	Multi-view vs. Single-view KMeans

	Multi-view Spectral Clustering

	Assessing the Conditional Independence Views Requirement of Multi-view Spectral Clustering

	Multi-view vs Single-view Spectral Clustering

	Multi-view Spherical KMeans

	Multi-view vs Single-view Spherical KMeans

	Using the Multi-view Clustering Algorithm to Cluster Data with Multiple Views

	Multi-view Vs Single-view Visualization and Clustering








Semi-Supervised

The following tutorials demonstrate how effectiveness of cotraining in certain multiview scenarios to
boost accuracy over single view methods.



	Co-Training 2-View Semi-Supervised Classification

	Cotraining classification performance in simulated multiview scenarios

	Co-Training 2-View Semi-Supervised Regression








Embedding

Inference on and visualization of multiview data often requires low-dimensional representations of the data, known as embeddings. Below are tutorials for computing such embeddings on multiview data.



	Generalized Canonical Correlation Analysis (GCCA)

	GCCA vs PCA

	Kernel CCA (KCCA)

	Kernel CCA: ICD Method

	Deep CCA (DCCA)

	CCA Variants Comparison

	Multiview Multidimensional Scaling (MVMDS)

	MVMDS vs PCA

	Omnibus Embedding for Multiview Data

	SplitAE Embeddings on multiview MNIST data

	Predicting views using SplitAE








Decomposition

The following tutorials show how to use multi-view decomposition algorithms.



	Angle-based Joint and Individual Variation (AJIVE) Explained

	Multiview Independent Component Analysis (ICA) Tutorial

	Group ICA: a tutorial








Pipeline

The following tutorials showcase how mvlearn tools can integrate with one another and into an sklearn pipeline.



	Integrating mvlearn with scikit-learn

	ViewTransformer

	Mergers

	Pipeline example: group-ICA








Plotting

Methods build on top of Matplotlib and Seaborn have been implemented for convenient plotting of multiview data. See examples of such plots on simulated data.



	Using quick_visualize() to quickly understand multi-view data

	Plotting Across 2 Views








Test Dataset

In order to conviently run tools in this package on multview data, data can be simulated or  be accessed from the publicly available UCI multiple features dataset [https://archive.ics.uci.edu/ml/datasets/Multiple+Features] using a dataloader in this package.



	Loading and Viewing the UCI Multiple Features Dataset

	Multiview Data from Gaussian Mixtures

	Multi-view Vs Single-view Visualization and Clustering











          

      

      

    

  

    
      
          
            
  

None


Multi-view KMeans


[15]:






from mvlearn.datasets import load_UCImultifeature
from mvlearn.cluster import MultiviewKMeans
from sklearn.cluster import KMeans
import numpy as np
from sklearn.manifold import TSNE
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
RANDOM_SEED=5








Load in UCI digits multiple feature data set as an example


[16]:






# Load dataset along with labels for digits 0 through 4
n_class = 5
data, labels = load_UCImultifeature(select_labeled = list(range(n_class)))

# Just get the first two views of data
m_data = data[:2]








[17]:






# Helper function to display data and the results of clustering
def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()










Single-view and multi-view clustering of the data with 2 views

Here we will compare the performance of the Multi-view and Single-view versions of kmeans clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.

As we can see, Multi-view clustering produces clusters with higher purity compared to those produced by clustering on just a single view or by clustering the two views concatenated together.


[18]:






#################Single-view kmeans clustering#####################
# Cluster each view separately
s_kmeans = KMeans(n_clusters=n_class, random_state=RANDOM_SEED)
s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

# Concatenate the multiple views into a single view
s_data = np.hstack(m_data)
s_clusters = s_kmeans.fit_predict(s_data)

# Compute nmi between true class labels and single-view cluster labels
s_nmi_v1 = nmi_score(labels, s_clusters_v1)
s_nmi_v2 = nmi_score(labels, s_clusters_v2)
s_nmi = nmi_score(labels, s_clusters)
print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view kmeans clustering######################

# Use the MultiviewKMeans instance to cluster the data
m_kmeans = MultiviewKMeans(n_clusters=n_class, random_state=RANDOM_SEED)
m_clusters = m_kmeans.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi = nmi_score(labels, m_clusters)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))













Single-view View 1 NMI Score: 0.635

Single-view View 2 NMI Score: 0.746

Single-view Concatenated NMI Score: 0.746

Multi-view NMI Score: 0.770










Plot clusters produced by multi-view spectral clustering and the true clusters

We will display the clustering results of the Multi-view kmeans clustering algorithm below, along with the true class labels.


[19]:






# Running TSNE to display clustering results via low dimensional embedding
tsne = TSNE()
new_data_1 = tsne.fit_transform(m_data[0])
new_data_2 = tsne.fit_transform(m_data[1])








[20]:






display_plots('Multi-view KMeans Clusters', m_data, m_clusters)
display_plots('True Labels', m_data, labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKMeans_Tutorial_9_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKMeans_Tutorial_9_3.png]







Spectral clustering with different parameters

Here we will again compare the performance of the Multi-view and Single-view versions of kmeans clusteringon data with 2 views. We will follow a similar procedure as before, but we will be using a different configuration of parameters for Multi-view Spectral Clustering.

Again, we can see that Multi-view clustering produces clusters with higher purity compared to those produced by clustering on just a single view or by clustering the two views concatenated together.


[21]:






#################Single-view kmeans clustering#####################
# Cluster each view separately
s_kmeans = KMeans(n_clusters=n_class, random_state=RANDOM_SEED)
s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

# Concatenate the multiple views into a single view
s_data = np.hstack(m_data)
s_clusters = s_kmeans.fit_predict(s_data)

# Compute nmi between true class labels and single-view cluster labels
s_nmi_v1 = nmi_score(labels, s_clusters_v1)
s_nmi_v2 = nmi_score(labels, s_clusters_v2)
s_nmi = nmi_score(labels, s_clusters)
print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view kmeans clustering######################

# Use the MultiviewKMeans instance to cluster the data
m_kmeans = MultiviewKMeans(n_clusters=n_class,
        n_init=10, max_iter=6, patience=2, random_state=RANDOM_SEED)
m_clusters = m_kmeans.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi = nmi_score(labels, m_clusters)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))













Single-view View 1 NMI Score: 0.635

Single-view View 2 NMI Score: 0.746

Single-view Concatenated NMI Score: 0.746

Multi-view NMI Score: 0.747













          

      

      

    

  

    
      
          
            
  

None


Assessing the Conditional Independence Views Requirement of Multi-view KMeans

In the following experiments, we will perform single-view kmeans clustering on the two views separately and on them concatenated together. We also perform multi-view clustering using the multi-view algorithm. We will also compare the performance of multi-view and single-view versions of kmeans clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.


[8]:






import numpy as np
from numpy.random import multivariate_normal
import scipy as scp
from mvlearn.cluster.mv_k_means import MultiviewKMeans
from sklearn.metrics import normalized_mutual_info_score as nmi_score
from sklearn.cluster import KMeans
from sklearn.datasets import fetch_covtype
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.manifold import TSNE
import warnings
warnings.filterwarnings("ignore")
RANDOM_SEED=10








Artificial dataset with conditionally independent views

Here, we create an artificial dataset where the conditional independence assumption between views, given the true labels, is enforced. Our artificial dataset is derived from the forest covertypes dataset from the scikit-learn package. This dataset is comprised of 7 different classes, with with 54 different numerical features per sample. To create our artificial data, we will select 500 samples from each of the first 6 classes in the dataset, and from these, construct 3 artificial classes with 2
views each.


[2]:






def get_ci_data(num_samples=500):

    #Load in the vectorized news group data from scikit-learn package
    cov = fetch_covtype()
    all_data = np.array(cov.data)
    all_targets = np.array(cov.target)

    #Set class pairings as described in the multiview clustering paper
    view1_classes = [1, 2, 3]
    view2_classes = [4, 5, 6]

    #Create lists to hold data and labels for each of the classes across 2 different views
    labels =  [num for num in range(len(view1_classes)) for _ in range(num_samples)]
    labels = np.array(labels)
    view1_data = list()
    view2_data = list()

    #Randomly sample items from each of the selected classes in view1
    for class_num in view1_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view1_data.append(class_data[indices])
    view1_data = np.concatenate(view1_data)


    #Randomly sample items from each of the selected classes in view2
    for class_num in view2_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view2_data.append(class_data[indices])
    view2_data = np.concatenate(view2_data)

    #Shuffle and normalize vectors
    shuffled_inds = np.random.permutation(num_samples * len(view1_classes))
    view1_data = np.vstack(view1_data)
    view2_data = np.vstack(view2_data)
    view1_data = view1_data[shuffled_inds]
    view2_data = view2_data[shuffled_inds]
    magnitudes1 = np.linalg.norm(view1_data, axis=0)
    magnitudes2 = np.linalg.norm(view2_data, axis=0)
    magnitudes1[magnitudes1 == 0] = 1
    magnitudes2[magnitudes2 == 0] = 1
    magnitudes1 = magnitudes1.reshape((1, -1))
    magnitudes2 = magnitudes2.reshape((1, -1))
    view1_data /= magnitudes1
    view2_data /= magnitudes2
    labels = labels[shuffled_inds]
    return [view1_data, view2_data], labels









[3]:






def perform_clustering(seed, m_data, labels, n_clusters):
    #################Single-view kmeans clustering#####################
    # Cluster each view separately
    s_kmeans = KMeans(n_clusters=n_clusters, random_state=seed, n_init=100)
    s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
    s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_kmeans.fit_predict(s_data)

    # Compute nmi between true class labels and single-view cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    #################Multi-view kmeans clustering######################

    # Use the MultiviewKMeans instance to cluster the data
    m_kmeans = MultiviewKMeans(n_clusters=n_clusters, n_init=100, random_state=seed)
    m_clusters = m_kmeans.fit_predict(m_data)

    # Compute nmi between true class labels and multi-view cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters








[4]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(new_data[0][:, 0], new_data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(new_data[1][:, 0], new_data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()










Comparing the performance of multi-view and single-view KMeans on our dataset with conditionally independent views

The co-Expectation Maximization framework (and co-training), relies on the fundamental assumption that data views are conditionally independent. If all views are informative and conditionally independent, then Multi-view KMeans is expected to produce higher quality clusters than Single-view KMeans, for either view or for both views concatenated together. Here, we will evaluate the quality of clusters by using the normalized mutual information metric, which is essentially a measure of the purity
of clusters with respect to the true underlying class labels.

As we see below, Multi-view KMeans produces clusters with higher purity than Single-view KMeans across a range of values for the n_clusters parameter for data with complex and informative views, which is consistent with some of the results from the original Multi-view clustering paper.


[9]:






data, labels = get_ci_data()
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 3)

# Running TSNE to display clustering results via low dimensional embedding
tsne = TSNE()
new_data = list()
new_data.append(tsne.fit_transform(data[0]))
new_data.append(tsne.fit_transform(data[1]))
display_plots('True Labels', new_data, labels)
display_plots('Multi-view Clustering Results', new_data, m_clusters)













Single-view View 1 NMI Score: 0.342

Single-view View 2 NMI Score: 0.503

Single-view Concatenated NMI Score: 0.422

Multi-view NMI Score: 0.530












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_7_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_7_4.png]







Artificial dataset with conditionally dependent views

Here, we create an artificial dataset where the conditional independence assumption between views, given the true labels, is violated. We again derive our dataset from the forest covertypes dataset from sklearn. However, this time, we use only the first 3 classes of the dataset, which will correspond to the 3 clusters for view 1. To produce view 2, we will apply a simple nonlinear transformation to view 1 using the logistic function, and we will apply a negligible amount of noise to the second
view to avoid convergence issues. This will result in a dataset where the correspondance between views is very high.


[6]:






def get_cd_data(num_samples=500):

    #Load in the vectorized news group data from scikit-learn package
    cov = fetch_covtype()
    all_data = np.array(cov.data)
    all_targets = np.array(cov.target)

    #Set class pairings as described in the multiview clustering paper
    view1_classes = [1, 2, 3]
    view2_classes = [4, 5, 6]

    #Create lists to hold data and labels for each of the classes across 2 different views
    labels =  [num for num in range(len(view1_classes)) for _ in range(num_samples)]
    labels = np.array(labels)
    view1_data = list()
    view2_data = list()

    #Randomly sample 500 items from each of the selected classes in view1
    for class_num in view1_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view1_data.append(class_data[indices])
    view1_data = np.concatenate(view1_data)


    #Construct view 2 by applying a nonlinear transformation
    #to data from view 1 comprised of a linear transformation
    #and a logistic nonlinearity
    t_mat =  np.random.random((view1_data.shape[1], 50))
    noise = 0.005 - 0.01*np.random.random((view1_data.shape[1], 50))
    t_mat *= noise
    transformed = view1_data @ t_mat
    view2_data = scp.special.expit(transformed)

    #Shuffle and normalize vectors
    shuffled_inds = np.random.permutation(num_samples * len(view1_classes))
    view1_data = np.vstack(view1_data)
    view2_data = np.vstack(view2_data)
    view1_data = view1_data[shuffled_inds]
    view2_data = view2_data[shuffled_inds]
    magnitudes1 = np.linalg.norm(view1_data, axis=0)
    magnitudes2 = np.linalg.norm(view2_data, axis=0)
    magnitudes1[magnitudes1 == 0] = 1
    magnitudes2[magnitudes2 == 0] = 1
    magnitudes1 = magnitudes1.reshape((1, -1))
    magnitudes2 = magnitudes2.reshape((1, -1))
    view1_data /= magnitudes1
    view2_data /= magnitudes2
    labels = labels[shuffled_inds]
    return [view1_data, view2_data], labels











Comparing the performance of multi-view and single-view KMeans on our dataset with conditionally dependent views

As mentioned before co-Expectation Maximization framework (and co-training), relies on the fundamental assumption that data views are conditionally independent. Here, we will again compare the performance of single-view and multi-view kmeans clustering using the same methods as before, but on our conditionally dependent dataset.

As we see below, Multi-view KMeans does not beat the best Single-view clustering performance with respect to purity, since that the views are conditionally dependent.


[10]:






data, labels = get_cd_data()
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 3)

# Running TSNE to display clustering results via low dimensional embedding
tsne = TSNE()
new_data = list()
new_data.append(tsne.fit_transform(data[0]))
new_data.append(tsne.fit_transform(data[1]))
display_plots('True Labels', new_data, labels)
display_plots('Multi-view Clustering Results', new_data, m_clusters)













Single-view View 1 NMI Score: 0.342

Single-view View 2 NMI Score: 0.184

Single-view Concatenated NMI Score: 0.222

Multi-view NMI Score: 0.236












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_11_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_11_4.png]







Evaluating the performance of Multi-view and Single-view KMeans clustering on other complex data

To see the relative performance of single-view and multi-view clustering on complex, real world data, please refer to the MultiviewKMeans_Tutorial notebook, which illustrates the application of both of these clustering methods to the UCI Digits Multiple Features Dataset. In this notebook, we can see that multi-view kmeans clustering produces clusters with higher purity than the single-view analogs when given informative views of data, even if conditional independence is not strictly enforced.







          

      

      

    

  

    
      
          
            
  

None


Multi-view vs. Single-view KMeans


[1]:






import numpy as np
from numpy.random import multivariate_normal
from mvlearn.cluster.mv_k_means import MultiviewKMeans
from sklearn.cluster import KMeans
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import matplotlib.pyplot as plt
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
RANDOM_SEED=10








A function to generate 2 views of data for 2 classes

This function takes parameters for means, variances, and number of samples for class and generates data based on those parameters. The underlying probability distribution of the data is a multivariate gaussian distribution.


[2]:






def create_data(seed, vmeans, vvars, num_per_class=500):

    np.random.seed(seed)
    data = [[],[]]

    for view in range(2):
        for comp in range(len(vmeans[0])):
            cov = np.eye(2) * vvars[view][comp]
            comp_samples = np.random.multivariate_normal(vmeans[view][comp], cov, size=num_per_class)
            data[view].append(comp_samples)
    for view in range(2):
        data[view] = np.vstack(data[view])

    labels = list()
    for ind in range(len(vmeans[0])):
        labels.append(ind * np.ones(num_per_class,))

    labels = np.concatenate(labels)

    return data, labels










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[3]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()










Creating a function to perform both single-view and multi-view kmeans clustering

In the following function, we will perform single-view kmeans clustering on the two views separately and on them concatenated together. We also perform multi-view clustering using the multi-view algorithm. We will also compare the performance of multi-view and single-view versions of kmeans clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.


[4]:






def perform_clustering(seed, m_data, labels, n_clusters):
    #################Single-view kmeans clustering#####################
    # Cluster each view separately
    s_kmeans = KMeans(n_clusters=n_clusters, random_state=seed, n_init=100)
    s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
    s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_kmeans.fit_predict(s_data)

    # Compute nmi between true class labels and single-view cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    #################Multi-view kmeans clustering######################

    # Use the MultiviewKMeans instance to cluster the data
    m_kmeans = MultiviewKMeans(n_clusters=n_clusters, n_init=100, random_state=seed)
    m_clusters = m_kmeans.fit_predict(m_data)

    # Compute nmi between true class labels and multi-view cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters










General experimentation procedures

For each of the experiments below, we run both single-view kmeans clustering and multi-view kmeans clustering. For evaluating single-view performance, we run the algorithm on each view separately as well as all views concatenated together. We evalaute performance using normalized mutual information, which is a measure of cluster purity with respect to the true labels. For both algorithms, we use an n_init value of 100, which means that we run each algorithm across 100 random cluster
initializations and select the best clustering results with respect to cluster inertia (within cluster sum-of-squared distances).


Performance when cluster components in both views are well separated

Cluster components 1: * Mean: [3, 3] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view kmeans clustering performs about as well as single-view kmeans clustering for the concatenated views, and both of these perform better than on single-view clustering for just one view.


[5]:






v1_means = [[3, 3], [0, 0]]
v2_means = [[3, 3], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.901

Single-view View 2 NMI Score: 0.888

Single-view Concatenated NMI Score: 0.990

Multi-view NMI Score: 0.990












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_10_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_10_4.png]







Performance when cluster components are relatively inseparable (highly overlapping) in both views

Cluster components 1: * Mean: [0.5, 0.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view kmeans clustering performs about as poorly as single-view kmeans clustering across both individual views and concatenated views as inputs.


[6]:






v1_means = [[0.5, 0.5], [0, 0]]
v2_means = [[0.5, 0.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.062

Single-view View 2 NMI Score: 0.044

Single-view Concatenated NMI Score: 0.098

Multi-view NMI Score: 0.110












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_12_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_12_4.png]







Performance when cluster components are somewhat separable (somewhat overlapping) in both views

Cluster components 1: * Mean: [1.5, 1.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

Again we can see that multi-view kmeans clustering performs about as well as single-view kmeans clustering for the concatenated views, and both of these perform better than on single-view clustering for just one view.


[7]:






v1_means = [[1.5, 1.5], [0, 0]]
v2_means = [[1.5, 1.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.425

Single-view View 2 NMI Score: 0.410

Single-view Concatenated NMI Score: 0.657

Multi-view NMI Score: 0.632












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_14_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_14_4.png]







Performance when cluster components are highly overlapping in one view

Cluster components 1: * Mean: View 1 = [0.5, 0.5], View 2 = [2, 2] * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view kmeans clustering performs worse than single-view kmeans clustering with concatenated views as inputs and with the best view as the input.


[8]:






v1_means = [[0.5, 0.5], [0, 0]]
v2_means = [[2, 2], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.062

Single-view View 2 NMI Score: 0.608

Single-view Concatenated NMI Score: 0.616

Multi-view NMI Score: 0.591












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_16_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_16_4.png]







Conclusions

Here, we have seen some of the limitations of multi-view kmeans clustering. From the experiments above, it is apparent that multi-view kmeans clustering performs equally as well or worse than single-view kmeans clustering on concatenated data when views are informative but the data is fairly simple (i.e. only has 2 features per view). However, it is clear that the multi-view kmeans algorithm does perform better on well separated cluster components than it does on highly overlapping cluster
components, which does validate it’s basic functionality as a clustering algorithm.









          

      

      

    

  

    
      
          
            
  

None


Multi-view Spectral Clustering


[1]:






from mvlearn.datasets import load_UCImultifeature
from mvlearn.cluster import MultiviewSpectralClustering
from mvlearn.plotting import quick_visualize
import numpy as np
from sklearn.cluster import SpectralClustering
from sklearn.metrics import normalized_mutual_info_score as nmi_score
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
import scipy
import warnings

warnings.simplefilter('ignore') # Ignore warnings
%matplotlib inline
RANDOM_SEED=10








Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[2]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()








Performance on moons dataset

For this example, we use the sklearn make_moons function to make two interleaving half circles in two views. We then use spectral clustering to separate the two views. As we can see below, multi-view spectral clustering is capable of effectively clustering non-convex cluster shapes, similarly to its single-view analog.


[3]:






# A function to generate the moons data
def create_moons(seed, num_per_class=500):

    np.random.seed(seed)
    data = []
    labels = []

    for view in range(2):
        v_dat, v_labs = make_moons(num_per_class*2,
                random_state=seed + view, noise=0.05, shuffle=False)
        if view == 1:
            v_dat = v_dat[:, ::-1]

        data.append(v_dat)
    for ind in range(len(data)):
        labels.append(ind * np.ones(num_per_class,))
    labels = np.concatenate(labels)

    return data, labels








[4]:






# Generating the data
m_data, labels = create_moons(RANDOM_SEED)
n_class = 2

#################Single-view spectral clustering#####################
# Cluster each view separately
s_spectral = SpectralClustering(n_clusters=n_class,
            affinity='nearest_neighbors', random_state=RANDOM_SEED, n_init=100)
s_clusters_v1 = s_spectral.fit_predict(m_data[0])
s_clusters_v2 = s_spectral.fit_predict(m_data[1])

# Concatenate the multiple views into a single view
s_data = np.hstack(m_data)
s_clusters = s_spectral.fit_predict(s_data)

# Compute nmi between true class labels and single-view cluster labels
s_nmi_v1 = nmi_score(labels, s_clusters_v1)
s_nmi_v2 = nmi_score(labels, s_clusters_v2)
s_nmi = nmi_score(labels, s_clusters)
print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view spectral clustering######################

# Use the MultiviewSpectralClustering instance to cluster the data
m_spectral = MultiviewSpectralClustering(n_clusters=n_class,
                affinity='nearest_neighbors', max_iter=12, random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi = nmi_score(labels, m_clusters)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))













Single-view View 1 NMI Score: 1.000

Single-view View 2 NMI Score: 1.000

Single-view Concatenated NMI Score: 1.000

Multi-view NMI Score: 1.000












Plots of clusters produced by multi-view spectral clustering and the true clusters

We will display the clustering results of the Multi-view spectral clustering algorithm below, along with the true class labels.


[5]:






display_plots('Ground Truth' , m_data, labels)
display_plots('Multi-view Clustering' , m_data, m_clusters)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_8_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_8_3.png]





Performance on the UCI Digits Multiple Features data set with 2 views

Here we will compare the performance of the Multi-view and Single-view versions of spectral clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.

As we can see, Multi-view clustering produces clusters with higher purity compared to those produced by Single-view clustering for all 3 input types.


[6]:






# Load dataset along with labels for digits 0 through 4
n_class = 5
m_data, labels = load_UCImultifeature(select_labeled = list(range(n_class)))








[7]:






#################Single-view spectral clustering#####################
# Cluster each view separately
s_spectral = SpectralClustering(n_clusters=n_class, random_state=RANDOM_SEED, n_init=100)

for i in range(len(m_data)):
    s_clusters = s_spectral.fit_predict(m_data[i])
    s_nmi = nmi_score(labels, s_clusters, average_method='arithmetic')
    print('Single-view View {0:d} NMI Score: {1:.3f}\n'.format(i + 1, s_nmi))

# Concatenate the multiple views into a single view and produce clusters
s_data = np.hstack(m_data)
s_clusters = s_spectral.fit_predict(s_data)

s_nmi = nmi_score(labels, s_clusters)
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view spectral clustering######################

# Use the MultiviewSpectralClustering instance to cluster the data
m_spectral1 = MultiviewSpectralClustering(n_clusters=n_class,
            random_state=RANDOM_SEED, n_init=100)
m_clusters1 = m_spectral1.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi1 = nmi_score(labels, m_clusters1)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi1))













Single-view View 1 NMI Score: 0.620

Single-view View 2 NMI Score: 0.007

Single-view View 3 NMI Score: 0.004

Single-view View 4 NMI Score: -0.000

Single-view View 5 NMI Score: 0.007

Single-view View 6 NMI Score: 0.010

Single-view Concatenated NMI Score: 0.008

Multi-view NMI Score: 0.881












Plots of clusters produced by multi-view spectral clustering and the true clusters

We will display the clustering results of the Multi-view spectral clustering algorithm below, along with the true class labels.


[8]:






quick_visualize(m_data, labels=labels, title='Ground Truth', scatter_kwargs={'s':8})
quick_visualize(m_data, labels=m_clusters1, title='Multi-view Clustering', scatter_kwargs={'s':8})












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_13_0.png]









[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_13_1.png]










          

      

      

    

  

    
      
          
            
  

None


Assessing the Conditional Independence Views Requirement of Multi-view Spectral Clustering


[2]:






import numpy as np
from numpy.random import multivariate_normal
import scipy as scp
from mvlearn.cluster.mv_spectral import MultiviewSpectralClustering
from sklearn.cluster import SpectralClustering
from sklearn.metrics import normalized_mutual_info_score as nmi_score
from sklearn.datasets import fetch_covtype
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.manifold import TSNE
import warnings
warnings.filterwarnings("ignore")
RANDOM_SEED=10








Creating an artificial dataset where the conditional independence assumption between views holds

Here, we create an artificial dataset where the conditional independence assumption between views, given the true labels, is enforced. Our artificial dataset is derived from the forest covertypes dataset from the scikit-learn package. This dataset is comprised of 7 different classes, with with 54 different numerical features per sample. To create our artificial data, we will select 500 samples from each of the first 6 classes in the dataset, and from these, construct 3 artificial classes with 2
views each.


[3]:






def get_ci_data(num_samples=500):

    #Load in the vectorized news group data from scikit-learn package
    cov = fetch_covtype()
    all_data = np.array(cov.data)
    all_targets = np.array(cov.target)

    #Set class pairings as described in the multiview clustering paper
    view1_classes = [1, 2, 3]
    view2_classes = [4, 5, 6]

    #Create lists to hold data and labels for each of the classes across 2 different views
    labels =  [num for num in range(len(view1_classes)) for _ in range(num_samples)]
    labels = np.array(labels)
    view1_data = list()
    view2_data = list()

    #Randomly sample items from each of the selected classes in view1
    for class_num in view1_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view1_data.append(class_data[indices])
    view1_data = np.concatenate(view1_data)


    #Randomly sample items from each of the selected classes in view2
    for class_num in view2_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view2_data.append(class_data[indices])
    view2_data = np.concatenate(view2_data)

    #Shuffle and normalize vectors
    shuffled_inds = np.random.permutation(num_samples * len(view1_classes))
    view1_data = np.vstack(view1_data)
    view2_data = np.vstack(view2_data)
    view1_data = view1_data[shuffled_inds]
    view2_data = view2_data[shuffled_inds]
    magnitudes1 = np.linalg.norm(view1_data, axis=0)
    magnitudes2 = np.linalg.norm(view2_data, axis=0)
    magnitudes1[magnitudes1 == 0] = 1
    magnitudes2[magnitudes2 == 0] = 1
    magnitudes1 = magnitudes1.reshape((1, -1))
    magnitudes2 = magnitudes2.reshape((1, -1))
    view1_data /= magnitudes1
    view2_data /= magnitudes2
    labels = labels[shuffled_inds]
    return [view1_data, view2_data], labels











Creating a function to perform both single-view and multi-view spectral clustering

In the following function, we will perform single-view spectral clustering on the two views separately and on them concatenated together. We also perform multi-view clustering using the multi-view algorithm. We will also compare the performance of multi-view and single-view versions of spectral clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.


[4]:






def perform_clustering(seed, m_data, labels, n_clusters):

    #################Single-view spectral clustering#####################
    # Cluster each view separately
    s_spectral = SpectralClustering(n_clusters=n_clusters, random_state=RANDOM_SEED, n_init=100)
    s_clusters_v1 = s_spectral.fit_predict(m_data[0])
    s_clusters_v2 = s_spectral.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_spectral.fit_predict(s_data)

    # Compute nmi between true class labels and single-view cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    #################Multi-view spectral clustering######################

    # Use the MultiviewSpectralClustering instance to cluster the data
    m_spectral = MultiviewSpectralClustering(n_clusters=n_clusters, random_state=RANDOM_SEED, n_init=100)
    m_clusters = m_spectral.fit_predict(m_data)

    # Compute nmi between true class labels and multi-view cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multi-view Concatenated NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[5]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(new_data[0][:, 0], new_data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(new_data[1][:, 0], new_data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()








Comparing multi-view and single-view spectral clustering on our data set with conditionally independent views

The co-training framework relies on the fundamental assumption that data views are conditionally independent. If all views are informative and conditionally independent, then Multi-view Spectral Clustering is expected to produce higher quality clusters than Single-view Spectral Clustering, for either view or for both views concatenated together. Here, we will evaluate the quality of clusters by using the normalized mutual information metric, which is essentially a measure of the purity of
clusters with respect to the true underlying class labels.

As we see below, Multi-view Spectral Clustering produces clusters with lower purity than those produced by Single-view Spectral clustering on the concatenated views, which is surprising.


[6]:






data, labels = get_ci_data()
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 3)

# Running TSNE to display clustering results via low dimensional embedding
tsne = TSNE()
new_data = list()
new_data.append(tsne.fit_transform(data[0]))
new_data.append(tsne.fit_transform(data[1]))
display_plots('True Labels', new_data, labels)
display_plots('Multi-view Clustering Results', new_data, m_clusters)













Single-view View 1 NMI Score: 0.316

Single-view View 2 NMI Score: 0.500

Single-view Concatenated NMI Score: 0.758

Multi-view Concatenated NMI Score: 0.552












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_ComplexData_9_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_ComplexData_9_4.png]









Creating an artificial dataset where the conditional independence assumption between views does not hold

Here, we create an artificial dataset where the conditional independence assumption between views, given the true labels, is violated. We again derive our dataset from the forest covertypes dataset from sklearn. However, this time, we use only the first 3 classes of the dataset, which will correspond to the 3 clusters for view 1. To produce view 2, we will apply a simple nonlinear transformation to view 1 using the logistic function, and we will apply a negligible amount of noise to the second
view to avoid convergence issues. This will result in a dataset where the correspondance between views is very high.


[7]:






def get_cd_data(num_samples=500):

    #Load in the vectorized news group data from scikit-learn package
    cov = fetch_covtype()
    all_data = np.array(cov.data)
    all_targets = np.array(cov.target)

    #Set class pairings as described in the multiview clustering paper
    view1_classes = [1, 2, 3]
    view2_classes = [4, 5, 6]

    #Create lists to hold data and labels for each of the classes across 2 different views
    labels =  [num for num in range(len(view1_classes)) for _ in range(num_samples)]
    labels = np.array(labels)
    view1_data = list()
    view2_data = list()

    #Randomly sample 500 items from each of the selected classes in view1
    for class_num in view1_classes:
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], num_samples)
        view1_data.append(class_data[indices])
    view1_data = np.concatenate(view1_data)


    #Construct view 2 by applying a nonlinear transformation
    #to data from view 1 comprised of a linear transformation
    #and a logistic nonlinearity
    t_mat =  np.random.random((view1_data.shape[1], 50))
    noise = 0.005 - 0.01*np.random.random((view1_data.shape[1], 50))
    t_mat *= noise
    transformed = view1_data @ t_mat
    view2_data = scp.special.expit(transformed)

    #Shuffle and normalize vectors
    shuffled_inds = np.random.permutation(num_samples * len(view1_classes))
    view1_data = np.vstack(view1_data)
    view2_data = np.vstack(view2_data)
    view1_data = view1_data[shuffled_inds]
    view2_data = view2_data[shuffled_inds]
    magnitudes1 = np.linalg.norm(view1_data, axis=0)
    magnitudes2 = np.linalg.norm(view2_data, axis=0)
    magnitudes1[magnitudes1 == 0] = 1
    magnitudes2[magnitudes2 == 0] = 1
    magnitudes1 = magnitudes1.reshape((1, -1))
    magnitudes2 = magnitudes2.reshape((1, -1))
    view1_data /= magnitudes1
    view2_data /= magnitudes2
    labels = labels[shuffled_inds]
    return [view1_data, view2_data], labels








Comparing multi-view and single-view spectral clustering on our data set with conditionally dependent views

As mentioned before, the co-training framework relies on the fundamental assumption that data views are conditionally independent. Here, we will again compare the performance of single-view and multi-view spectral clustering using the same methods as before, but on our conditionally dependent dataset.

As we see below, Multi-view Spectral Clustering does not beat the best Single-view spectral clustering performance with respect to purity, since that the views are conditionally dependent.


[8]:






data, labels = get_cd_data()
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 3)













Single-view View 1 NMI Score: 0.327

Single-view View 2 NMI Score: 0.160

Single-view Concatenated NMI Score: 0.239

Multi-view Concatenated NMI Score: 0.308















          

      

      

    

  

    
      
          
            
  

None


Multi-view vs Single-view Spectral Clustering


[1]:






import numpy as np
from numpy.random import multivariate_normal
from mvlearn.cluster.mv_spectral import MultiviewSpectralClustering
from sklearn.cluster import SpectralClustering
from sklearn.datasets import make_moons
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import matplotlib
import matplotlib.pyplot as plt
import warnings

warnings.simplefilter('ignore') # Ignore warnings
%matplotlib inline
RANDOM_SEED=10








A function to generate 2 views of data for 2 classes

This function takes parameters for means, variances, and number of samples for class and generates data based on those parameters. The underlying probability distribution of the data is a multivariate gaussian distribution.


[2]:






def create_data(seed, vmeans, vvars, num_per_class=500):

    np.random.seed(seed)
    data = [[],[]]

    for view in range(2):
        for comp in range(len(vmeans[0])):
            cov = np.eye(2) * vvars[view][comp]
            comp_samples = np.random.multivariate_normal(vmeans[view][comp], cov, size=num_per_class)
            data[view].append(comp_samples)
    for view in range(2):
        data[view] = np.vstack(data[view])

    labels = list()
    for ind in range(len(vmeans[0])):
        labels.append(ind * np.ones(num_per_class,))

    labels = np.concatenate(labels)

    return data, labels










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[3]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()










Creating a function to perform both single-view and multi-view spectral clustering

In the following function, we will perform single-view spectral clustering on the two views separately and on them concatenated together. We also perform multi-view clustering using the multi-view algorithm. We will also compare the performance of multi-view and single-view versions of spectral clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.


[4]:






def perform_clustering(seed, m_data, labels, n_clusters, kernel='rbf'):

    #################Single-view spectral clustering#####################
    # Cluster each view separately
    s_spectral = SpectralClustering(n_clusters=n_clusters, random_state=RANDOM_SEED,
                                    affinity=kernel, n_init=100)
    s_clusters_v1 = s_spectral.fit_predict(m_data[0])
    s_clusters_v2 = s_spectral.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_spectral.fit_predict(s_data)

    # Compute nmi between true class labels and single-view cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    #################Multi-view spectral clustering######################

    # Use the MultiviewSpectralClustering instance to cluster the data
    m_spectral = MultiviewSpectralClustering(n_clusters=n_clusters, random_state=RANDOM_SEED,
                        affinity=kernel, n_init=100)
    m_clusters = m_spectral.fit_predict(m_data)

    # Compute nmi between true class labels and multi-view cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multi-view Concatenated NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters










General experimentation procedures

For each of the experiments below, we run both single-view spectral clustering and multi-view spectral clustering. For evaluating single-view performance, we run the algorithm on each view separately as well as all views concatenated together. We evalaute performance using normalized mutual information, which is a measure of cluster purity with respect to the true labels. For both algorithms, we use an n_init value of 100, which means that we run each algorithm across 100 random cluster
initializations and select the best clustering results with respect to cluster inertia (within cluster sum-of-squared distances).


Performance when cluster components in both views are well separated

Cluster components 1: * Mean: [3, 3] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view spectral clustering performs better than single-view spectral clustering for all 3 inputs.


[5]:






v1_means = [[3, 3], [0, 0]]
v2_means = [[3, 3], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.896

Single-view View 2 NMI Score: 0.870

Single-view Concatenated NMI Score: 0.981

Multi-view Concatenated NMI Score: 0.990












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_10_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_10_4.png]







Performance when cluster components are relatively inseparable (highly overlapping) in both views

Cluster components 1: * Mean: [0.5, 0.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view spectral clustering performs about as poorly as single-view spectral clustering on all 3 input types.


[6]:






v1_means = [[0.5, 0.5], [0, 0]]
v2_means = [[0.5, 0.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.064

Single-view View 2 NMI Score: 0.049

Single-view Concatenated NMI Score: 0.105

Multi-view Concatenated NMI Score: 0.110












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_12_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_12_4.png]







Performance when cluster components are somewhat separable (somewhat overlapping) in both views

Cluster components 1: * Mean: [1.5, 1.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view spectral clustering performs better than single-view spectral clustering for all 3 inputs.


[7]:






v1_means = [[1.5, 1.5], [0, 0]]
v2_means = [[1.5, 1.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.410

Single-view View 2 NMI Score: 0.413

Single-view Concatenated NMI Score: 0.661

Multi-view Concatenated NMI Score: 0.649












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_14_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_14_4.png]







Performance when cluster components are highly overlapping in one view

Cluster components 1: * Mean: View 1 = [0.5, 0.5], View 2 = [2, 2] * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)

As we can see, multi-view spectral clustering performs worse than single-view spectral clustering on the concatenated data and with the best view as input.


[8]:






v1_means = [[0.5, 0.5], [0, 0]]
v2_means = [[2, 2], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.064

Single-view View 2 NMI Score: 0.588

Single-view Concatenated NMI Score: 0.610

Multi-view Concatenated NMI Score: 0.393












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_16_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_16_4.png]







Performance on moons data

For this experiment, we use the sklearn make_moons function to make two interleaving half circles. We then use spectral clustering to separate the two views. In this experiment, the two views are identical. This experiment demonstrates the efficacy of using multi-view spectral clustering for non-convex clusters.


[9]:






def create_moons(seed, num_per_class=500):

    np.random.seed(seed)
    data = []
    labels = []

    for view in range(2):
        v_dat, v_labs = make_moons(num_per_class*2,
                random_state=seed + view, noise=0.05, shuffle=False)
        if view == 1:
            v_dat = v_dat[:, ::-1]

        data.append(v_dat)
    for ind in range(len(data)):
        labels.append(ind * np.ones(num_per_class,))
    labels = np.concatenate(labels)

    return data, labels








[10]:






data, labels = create_moons(RANDOM_SEED)
m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2, kernel='nearest_neighbors')
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 1.000

Single-view View 2 NMI Score: 1.000

Single-view Concatenated NMI Score: 1.000

Multi-view Concatenated NMI Score: 1.000












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_19_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_19_4.png]







Conclusions

From the above experiments, we can see some of the advantages and limitations of multi-view spectral clustering. We can see that it outperforms single-view spectral clustering when data views are both informative and relatively separable. However, when one view is particularly inseparable, it can perform worse than its single-view analog. Additionally, we can see that the clustering algorithm is capable of clustering nonconvex-shaped clusters. These results were obtained using simple, simulated
data, so results may vary on more complex data from the real world.









          

      

      

    

  

    
      
          
            
  

None


Multi-view Spherical KMeans

Note, this tutorial compares performance against the SphericalKMeans function from the spherecluster package which is not a installed dependency of mvlearn.


[1]:






!pip3 install spherecluster==0.1.7

from mvlearn.datasets import load_UCImultifeature
from mvlearn.cluster import MultiviewSphericalKMeans
from spherecluster import SphericalKMeans
import numpy as np
from sklearn.manifold import TSNE
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter('ignore') # Ignore warnings
%matplotlib inline













Requirement already satisfied: spherecluster==0.1.7 in /home/alex/MLenv/lib/python3.6/site-packages (0.1.7)
Requirement already satisfied: scipy in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.3.1)
Requirement already satisfied: pytest in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (5.2.1)
Requirement already satisfied: numpy in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.18.1)
Requirement already satisfied: scikit-learn>=0.20 in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (0.21.3)
Requirement already satisfied: nose in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.3.7)
Requirement already satisfied: importlib-metadata>=0.12; python_version < "3.8" in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.23)
Requirement already satisfied: atomicwrites>=1.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (1.3.0)
Requirement already satisfied: py>=1.5.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (1.8.0)
Requirement already satisfied: packaging in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (19.2)
Requirement already satisfied: more-itertools>=4.0.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (7.2.0)
Requirement already satisfied: attrs>=17.4.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (19.2.0)
Requirement already satisfied: wcwidth in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.1.7)
Requirement already satisfied: pluggy<1.0,>=0.12 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.13.0)
Requirement already satisfied: joblib>=0.11 in /home/alex/MLenv/lib/python3.6/site-packages (from scikit-learn>=0.20->spherecluster==0.1.7) (0.14.1)
Requirement already satisfied: zipp>=0.5 in /home/alex/MLenv/lib/python3.6/site-packages (from importlib-metadata>=0.12; python_version < "3.8"->pytest->spherecluster==0.1.7) (0.6.0)
Requirement already satisfied: pyparsing>=2.0.2 in /home/alex/MLenv/lib/python3.6/site-packages (from packaging->pytest->spherecluster==0.1.7) (2.3.0)
Requirement already satisfied: six in /home/alex/MLenv/lib/python3.6/site-packages (from packaging->pytest->spherecluster==0.1.7) (1.11.0)
WARNING: You are using pip version 19.3.1; however, version 20.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.












/home/alex/MLenv/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
  warnings.warn(msg, category=DeprecationWarning)







Load in UCI digits multiple feature dataset as an example


[2]:






RANDOM_SEED=5

# Load dataset along with labels for digits 0 through 4
n_class = 5
data, labels = load_UCImultifeature(select_labeled = list(range(n_class)))

# Just get the first two views of data
m_data = data[:2]










Creating a function to display data and the results of clustering


[3]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()








Multi-view spherical KMeans clustering on 2 views

Here we will compare the performance of the Multi-view and Single-view versions of spherical kmeans clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.

As we can see, Multi-view clustering produces clusters with slightly higher purity compared to those produced by clustering on just a single view or by clustering the two views concatenated together.


[4]:






#################Single-view spherical kmeans clustering#####################
# Cluster each view separately
s_kmeans = SphericalKMeans(n_clusters=n_class, random_state=RANDOM_SEED)
s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

# Concatenate the multiple views into a single view
s_data = np.hstack(m_data)
s_clusters = s_kmeans.fit_predict(s_data)

# Compute nmi between true class labels and single-view cluster labels
s_nmi_v1 = nmi_score(labels, s_clusters_v1)
s_nmi_v2 = nmi_score(labels, s_clusters_v2)
s_nmi = nmi_score(labels, s_clusters)
print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view spherical kmeans clustering######################

# Use the MultiviewSphericalKMeans instance to cluster the data
m_kmeans = MultiviewSphericalKMeans(n_clusters=n_class, random_state=RANDOM_SEED)
m_clusters = m_kmeans.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi = nmi_score(labels, m_clusters)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))













Single-view View 1 NMI Score: 0.631

Single-view View 2 NMI Score: 0.730

Single-view Concatenated NMI Score: 0.730

Multi-view NMI Score: 0.823












Plots of clusters produced by multi-view spectral clustering and the true clusters

We will display the clustering results of the Multi-view kmeans clustering algorithm below, along with the true class labels.


[5]:






# Running TSNE to display clustering results via low dimensional embedding
tsne = TSNE()
new_data_1 = tsne.fit_transform(m_data[0])
new_data_2 = tsne.fit_transform(m_data[1])
new_data = [new_data_1, new_data_2]








[6]:






display_plots('True Labels', new_data, labels)
display_plots('Multi-view KMeans Clusters', new_data, m_clusters)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalKMeans_Tutorial_10_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalKMeans_Tutorial_10_3.png]





Multi-view spherical KMeans clustering different parameters

Here we will again compare the performance of the Multi-view and Single-view versions of spherical kmeans clustering on data with 2 views. We will follow a similar procedure as before, but we will be using a different configuration of parameters for Multi-view Spherical KMeans Clustering.

Again, we can see that Multi-view clustering produces clusters with slightly higher purity compared to those produced by clustering on just a single view or by clustering the two views concatenated together.


[7]:






#################Single-view spherical kmeans clustering#####################
# Cluster each view separately
s_kmeans = SphericalKMeans(n_clusters=n_class, random_state=RANDOM_SEED)
s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

# Concatenate the multiple views into a single view
s_data = np.hstack(m_data)
s_clusters = s_kmeans.fit_predict(s_data)

# Compute nmi between true class labels and single-view cluster labels
s_nmi_v1 = nmi_score(labels, s_clusters_v1)
s_nmi_v2 = nmi_score(labels, s_clusters_v2)
s_nmi = nmi_score(labels, s_clusters)
print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#################Multi-view spherical kmeans clustering######################

# Use the MultiviewSphericalKMeans instance to cluster the data
m_kmeans = MultiviewSphericalKMeans(n_clusters=n_class,
        n_init=10, max_iter=6, patience=2, random_state=RANDOM_SEED)
m_clusters = m_kmeans.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi = nmi_score(labels, m_clusters)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))













Single-view View 1 NMI Score: 0.631

Single-view View 2 NMI Score: 0.730

Single-view Concatenated NMI Score: 0.730

Multi-view NMI Score: 0.684















          

      

      

    

  

    
      
          
            
  

None


Multi-view vs Single-view Spherical KMeans

Note, this tutorial compares performance against the SphericalKMeans function from the spherecluster package which is not a installed dependency of mvlearn.


[1]:






!pip3 install spherecluster==0.1.7

import numpy as np
from numpy.random import multivariate_normal
from mvlearn.cluster.mv_spherical_kmeans import MultiviewSphericalKMeans
from spherecluster import SphericalKMeans, sample_vMF
from sklearn.metrics import normalized_mutual_info_score as nmi_score
from sklearn.preprocessing import normalize
import matplotlib.pyplot as plt
%matplotlib inline
from mpl_toolkits.mplot3d import axes3d, Axes3D
import warnings
warnings.filterwarnings('ignore')













Requirement already satisfied: spherecluster==0.1.7 in /home/alex/MLenv/lib/python3.6/site-packages (0.1.7)
Requirement already satisfied: scipy in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.3.1)
Requirement already satisfied: pytest in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (5.2.1)
Requirement already satisfied: numpy in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.18.1)
Requirement already satisfied: nose in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (1.3.7)
Requirement already satisfied: scikit-learn>=0.20 in /home/alex/MLenv/lib/python3.6/site-packages (from spherecluster==0.1.7) (0.21.3)
Requirement already satisfied: py>=1.5.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (1.8.0)
Requirement already satisfied: pluggy<1.0,>=0.12 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.13.0)
Requirement already satisfied: atomicwrites>=1.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (1.3.0)
Requirement already satisfied: wcwidth in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.1.7)
Requirement already satisfied: importlib-metadata>=0.12; python_version < "3.8" in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (0.23)
Requirement already satisfied: attrs>=17.4.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (19.2.0)
Requirement already satisfied: packaging in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (19.2)
Requirement already satisfied: more-itertools>=4.0.0 in /home/alex/MLenv/lib/python3.6/site-packages (from pytest->spherecluster==0.1.7) (7.2.0)
Requirement already satisfied: joblib>=0.11 in /home/alex/MLenv/lib/python3.6/site-packages (from scikit-learn>=0.20->spherecluster==0.1.7) (0.14.1)
Requirement already satisfied: zipp>=0.5 in /home/alex/MLenv/lib/python3.6/site-packages (from importlib-metadata>=0.12; python_version < "3.8"->pytest->spherecluster==0.1.7) (0.6.0)
Requirement already satisfied: pyparsing>=2.0.2 in /home/alex/MLenv/lib/python3.6/site-packages (from packaging->pytest->spherecluster==0.1.7) (2.3.0)
Requirement already satisfied: six in /home/alex/MLenv/lib/python3.6/site-packages (from packaging->pytest->spherecluster==0.1.7) (1.11.0)
WARNING: You are using pip version 19.3.1; however, version 20.1 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.












/home/alex/MLenv/lib/python3.6/site-packages/sklearn/externals/joblib/__init__.py:15: DeprecationWarning: sklearn.externals.joblib is deprecated in 0.21 and will be removed in 0.23. Please import this functionality directly from joblib, which can be installed with: pip install joblib. If this warning is raised when loading pickled models, you may need to re-serialize those models with scikit-learn 0.21+.
  warnings.warn(msg, category=DeprecationWarning)







A function to generate 2 views of data for 2 classes

This function takes parameters for means, kappas (concentration parameter), and number of samples for class and generates data based on those parameters. The underlying probability distribution of the data is a von Mises-Fisher distribution.


[2]:






def create_data(seed, vmeans, vkappas, num_per_class=500):

    np.random.seed(seed)
    data = [[],[]]
    for view in range(2):
        for comp in range(len(vmeans[0])):
            comp_samples = sample_vMF(vmeans[view][comp],
                        vkappas[view][comp], num_per_class)
            data[view].append(comp_samples)
    for view in range(2):
        data[view] = np.vstack(data[view])

    labels = list()
    for ind in range(len(vmeans[0])):
        labels.append(ind * np.ones(num_per_class,))

    labels = np.concatenate(labels)

    return data, labels










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[3]:






def display_plots(pre_title, data, labels):
    plt.ion()
    # plot the views
    plt.figure()
    fig = plt.figure(figsize=(14, 10))
    for v in range(2):
        ax = fig.add_subplot(
            1, 2, v+1, projection='3d',
            xlim=[-1.1, 1.1], ylim=[-1.1, 1.1], zlim=[-1.1, 1.1]
        )
        ax.scatter(data[v][:, 0], data[v][:, 1], data[v][:, 2], c=labels, s=8)
        ax.set_title(pre_title + ' View ' + str(v))
        plt.axis('off')

    plt.show()










Creating a function to perform both single-view and multi-view spherical kmeans clustering

In the following function, we will perform single-view spherical kmeans clustering on the two views separately and on them concatenated together. We also perform multi-view clustering using the multi-view algorithm. We will also compare the performance of multi-view and single-view versions of the spherical kmeans clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.


[4]:






def perform_clustering(seed, m_data, labels, n_clusters):
    #################Single-view spherical kmeans clustering#####################
    # Cluster each view separately
    s_kmeans = SphericalKMeans(n_clusters=n_clusters, random_state=seed, n_init=100)
    s_clusters_v1 = s_kmeans.fit_predict(m_data[0])
    s_clusters_v2 = s_kmeans.fit_predict(m_data[1])

    # Concatenate the multiple views into a single view
    s_data = np.hstack(m_data)
    s_clusters = s_kmeans.fit_predict(s_data)

    # Compute nmi between true class labels and single-view cluster labels
    s_nmi_v1 = nmi_score(labels, s_clusters_v1)
    s_nmi_v2 = nmi_score(labels, s_clusters_v2)
    s_nmi = nmi_score(labels, s_clusters)
    print('Single-view View 1 NMI Score: {0:.3f}\n'.format(s_nmi_v1))
    print('Single-view View 2 NMI Score: {0:.3f}\n'.format(s_nmi_v2))
    print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

    #################Multi-view spherical kmeans clustering######################

    # Use the MultiviewKMeans instance to cluster the data
    m_kmeans = MultiviewSphericalKMeans(n_clusters=n_clusters, n_init=100, random_state=seed)
    m_clusters = m_kmeans.fit_predict(m_data)

    # Compute nmi between true class labels and multi-view cluster labels
    m_nmi = nmi_score(labels, m_clusters)
    print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi))

    return m_clusters










General experimentation procedures

For each of the experiments below, we run both single-view spherical kmeans clustering and multi-view spherical kmeans clustering. For evaluating single-view performance, we run the algorithm on each view separately as well as all views concatenated together. We evalaute performance using normalized mutual information, which is a measure of cluster purity with respect to the true labels. For both algorithms, we use an n_init value of 100, which means that we run each algorithm across 100 random
cluster initializations and select the best clustering results with respect to cluster inertia.


Performance when cluster components in both views are well separated

As we can see, multi-view kmeans clustering performs about as well as single-view spherical kmeans clustering for the concatenated views, and single-view spherical kmeans clustering for view 1.


[5]:






RANDOM_SEED=10

v1_kappas = [15, 15]
v2_kappas = [15, 15]
kappas = [v1_kappas, v2_kappas]
v1_mus = np.array([[-1, 1, 1],[1, 1, 1]])
v1_mus = normalize(v1_mus)
v2_mus = np.array([[1, -1, 1],[1, -1, -1]])
v2_mus = normalize(v2_mus)
v_means = [v1_mus, v2_mus]
data, labels = create_data(RANDOM_SEED, v_means, kappas)

m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.906

Single-view View 2 NMI Score: 0.920

Single-view Concatenated NMI Score: 1.000

Multi-view NMI Score: 1.000












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_10_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_10_4.png]







Performance when cluster components are relatively inseparable (highly overlapping) in both views

As we can see, multi-view spherical kmeans clustering performs about as poorly as single-view spherical kmeans clustering across both individual views and concatenated views as inputs.


[6]:






v1_kappas = [15, 15]
v2_kappas = [15, 15]
kappas = [v1_kappas, v2_kappas]
v1_mus = np.array([[0.5, 1, 1],[1, 1, 1]])
v1_mus = normalize(v1_mus)
v2_mus = np.array([[1, -1, 1],[1, -1, 0.5]])
v2_mus = normalize(v2_mus)
v_means = [v1_mus, v2_mus]
data, labels = create_data(RANDOM_SEED, v_means, kappas)

m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.102

Single-view View 2 NMI Score: 0.112

Single-view Concatenated NMI Score: 0.199

Multi-view NMI Score: 0.204












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_12_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_12_4.png]







Performance when cluster components are somewhat separable (somewhat overlapping) in both views

Again we can see that multi-view spherical kmeans clustering performs about as well as single-view spherical kmeans clustering for the concatenated views, and both of these perform better than on single-view spherical kmeans clustering for just one view.


[7]:






v1_kappas = [15, 10]
v2_kappas = [10, 15]
kappas = [v1_kappas, v2_kappas]
v1_mus = np.array([[-0.5, 1, 1],[1, 1, 1]])
v1_mus = normalize(v1_mus)
v2_mus = np.array([[1, -1, 1],[1, -1, -0.2]])
v2_mus = normalize(v2_mus)
v_means = [v1_mus, v2_mus]
data, labels = create_data(RANDOM_SEED, v_means, kappas)

m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.677

Single-view View 2 NMI Score: 0.552

Single-view Concatenated NMI Score: 0.827

Multi-view NMI Score: 0.831












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_14_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_14_4.png]







Performance when cluster components are highly overlapping in one view

As we can see, multi-view spherical kmeans clustering performs worse than single-view spherical kmeans clustering with concatenated views as inputs and with the best view as the input.


[8]:






v1_kappas = [15, 15]
v2_kappas = [15, 15]
kappas = [v1_kappas, v2_kappas]
v1_mus = np.array([[1, -0.5, 1],[1, 1, 1]])
v1_mus = normalize(v1_mus)
v2_mus = np.array([[1, -1, 1],[1, -1, 0.6]])
v2_mus = normalize(v2_mus)
v_means = [v1_mus, v2_mus]
data, labels = create_data(RANDOM_SEED, v_means, kappas)

m_clusters = perform_clustering(RANDOM_SEED, data, labels, 2)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)













Single-view View 1 NMI Score: 0.740

Single-view View 2 NMI Score: 0.077

Single-view Concatenated NMI Score: 0.768

Multi-view NMI Score: 0.741












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_16_2.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_16_4.png]







Conclusions

Here, we have seen some of the limitations of multi-view spherical kmeans clustering. From the experiments above, it is apparent that multi-view spherical kmeans clustering performs equally as well or worse than single-view spherical kmeans clustering on concatenated data when views are informative but the data is fairly simple (i.e. only has 2 features per view). However, it is clear that the multi-view spherical kmeans algorithm does perform better on well separated cluster components than it
does on highly overlapping cluster components, which does validate it’s basic functionality as a clustering algorithm.









          

      

      

    

  

    
      
          
            
  

None


Using the Multi-view Clustering Algorithm to Cluster Data with Multiple Views


[1]:






from mvlearn.datasets.base import load_UCImultifeature
from mvlearn.cluster import MultiviewCoRegSpectralClustering
from mvlearn.plotting import quick_visualize
import numpy as np
from sklearn.cluster import SpectralClustering
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import scipy
import warnings

warnings.simplefilter('ignore') # Ignore warnings
%matplotlib inline
RANDOM_SEED=10








Load the UCI Digits Multiple Features Data Set as an Example Data Set


[2]:






# Load dataset along with labels for digits 0 through 4
n_class = 5
m_data, labels = load_UCImultifeature(select_labeled = list(range(n_class)))








Running Co-Regularized Multi-view Spectral Clustering on the Data with 6 Views

Here we will compare the performance of the Co-Regularized Multi-view and Single-view versions of spectral clustering. We will evaluate the purity of the resulting clusters from each algorithm with respect to the class labels using the normalized mutual information metric.

As we can see, Co-Regularized Multi-view clustering produces clusters with higher purity compared to those produced by Single-view clustering for all 3 input types.


[3]:






#################Single-view spectral clustering#####################
# Cluster each view separately and compute nmi
s_spectral = SpectralClustering(n_clusters=n_class, random_state=RANDOM_SEED, n_init=100)

for i in range(len(m_data)):
    s_clusters = s_spectral.fit_predict(m_data[i])
    s_nmi = nmi_score(labels, s_clusters, average_method='arithmetic')
    print('Single-view View {0:d} NMI Score: {1:.3f}\n'.format(i + 1, s_nmi))

# Concatenate the multiple views into a single view and produce clusters
s_data = np.hstack(m_data)
s_clusters = s_spectral.fit_predict(s_data)

s_nmi = nmi_score(labels, s_clusters)
print('Single-view Concatenated NMI Score: {0:.3f}\n'.format(s_nmi))

#######Co-Regularized Multi-view spectral clustering##################


# Use the MultiviewSpectralClustering instance to cluster the data
m_spectral1 = MultiviewCoRegSpectralClustering(n_clusters=n_class,
            random_state=RANDOM_SEED, n_init=100)
m_clusters1 = m_spectral1.fit_predict(m_data)

# Compute nmi between true class labels and multi-view cluster labels
m_nmi1 = nmi_score(labels, m_clusters1)
print('Multi-view NMI Score: {0:.3f}\n'.format(m_nmi1))













Single-view View 1 NMI Score: 0.620

Single-view View 2 NMI Score: 0.007

Single-view View 3 NMI Score: 0.004

Single-view View 4 NMI Score: -0.000

Single-view View 5 NMI Score: 0.007

Single-view View 6 NMI Score: 0.010

Single-view Concatenated NMI Score: 0.008

Multi-view NMI Score: 0.866












Plots of clusters produced by multi-view spectral clustering and the true clusters

We will display the clustering results of the Co-Regularized Multi-view spectral clustering algorithm below, along with the true class labels.


[4]:






quick_visualize(m_data, labels=labels, title='Ground Truth', scatter_kwargs={'s':8})
quick_visualize(m_data, labels=m_clusters1, title='Multi-view Clustering', scatter_kwargs={'s':8})












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MVCoregularizedSpectral_Tutorial_7_0.png]









[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MVCoregularizedSpectral_Tutorial_7_1.png]










          

      

      

    

  

    
      
          
            
  

None


Multi-view Vs Single-view Visualization and Clustering

Here, we directly compare multi-view methods available within mvlearn to analagous single-view methods. Using the UCI Multiple Features Dataset, we first examine the dataset by viewing it after using dimensionality reduction techniques, then we perform unsupervised clustering and compare the results to the analagous single-view methods.


[1]:






from mvlearn.datasets import load_UCImultifeature
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline







Load 6-view, 4-class data from the Multiple Features Dataset. The full 6 views with all features will be used for clustering.


[2]:






# Load 4-class, multi-view data
Xs, y = load_UCImultifeature(select_labeled=[0,1,2,3])
#     Six views of handwritten digit images
#     1. 76 Fourier coefficients of the character shapes
#     2. 216 profile correlations
#     3. 64 Karhunen-Love coefficients
#     4. 240 pixel averages of the images from 2x3 windows
#     5. 47 Zernike moments
#     6. 6 morphological features
view_names = ['Fourier\nCoefficients', 'Profile\nCorrelations', 'Karhunen-\nLoeve',
              'Pixel\nAverages', 'Zernike\nMoments', 'Morphological\nFeatures']

order = np.argsort(y)
sub_samp = np.arange(0, Xs[0].shape[0], step=3)
set_aspect = 'equal'  # 'equal' or 'auto'
set_cmap = 'Spectral'

#row_orders = np.argsort(y)
for i, view in enumerate(Xs):
    sorted_view = view[order,:].copy()
    sorted_view = sorted_view[sub_samp,:]
    if set_aspect == 'auto':
        plt.figure(figsize=(1.5,4.5))
    else:
        plt.figure()

    # Scale matrix to [0, 1]
    minim = np.min(sorted_view)
    maxim = np.max(sorted_view)
    sorted_view = (sorted_view - minim) / (maxim - minim)

    plt.imshow(sorted_view, cmap=set_cmap, aspect=set_aspect)
    #plt.title('View {}'.format(i+1))
    plt.title(view_names[i], fontsize=14)
    plt.yticks([], "")
    max_dim = view.shape[1]
    plt.xticks([max_dim-1], [str(max_dim)])
    if i == 0:
        plt.ylabel('Samples')
    if i == 5:
        plt.colorbar()
    plt.xlabel('Features')
    plt.show()













[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_1.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_2.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_3.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_4.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_5.png]




Define a function to rearrange the predicted labels so that the predicted class ‘0’ corresponds better to the true class ‘0’. This is only used so that the colors generated by the labels in the prediction plots can be more easily compared to the true labels.


[3]:






from sklearn.metrics import confusion_matrix

def rearrange_labels(y_true, y_pred):
    conf_mat = confusion_matrix(y_true, y_pred)
    maxes = np.argmax(conf_mat, axis=0)
    y_pred_new = np.zeros_like(y_pred)
    for i, new in enumerate(maxes):
        y_pred_new[y_pred==i] = new
    return y_pred_new








Comparing Dimensionality Reduction Techniques

As one might do with a new dataset, we first visualize the data in 2 dimensions. For multi-view data, rather than using PCA, we use Multi-view Multi-dimensional Scaling (MVMDS) available in the package to capture the common principal components across views. This is performed automatically within the quick_visualize function. From the unlabeled plot, it is clear that there may be 4 underlying clusters, so unsupervised clustering with 4 clusters may be a natural next step in analyzing this data.


[4]:






from mvlearn.plotting import quick_visualize

# Use all 6 views available to reduce the dimensionality, since MVMDS is not limited
sca_kwargs = {'alpha' : 0.7, 's' : 10}

quick_visualize(Xs, title="Unlabeled", ax_ticks=False,
                ax_labels=False, scatter_kwargs=sca_kwargs)
quick_visualize(Xs, labels=y, title="True Labels", ax_ticks=False,
                ax_labels=False, scatter_kwargs=sca_kwargs)












[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_9_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_9_1.png]




As a comparison, we concatenate the views and use PCA to reduce the dimensionality. From the unlabeled plot, it is much less clear how many underlying classes there are, so PCA was not as useful for visualizing the data if our goal was to determine underlying clusters.


[5]:






from sklearn.decomposition import PCA

# Concatenate views to get naive single view
X_viewing = np.hstack([Xs[i] for i in range(len(Xs))])

# Use PCA for dimensionality reduction on the naive single view
pca = PCA(n_components=2)
pca_X = pca.fit_transform(X_viewing)

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("Unlabeled")
plt.show()

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], c=y, **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("True Labels")
plt.show()












[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_11_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_11_1.png]







Comparing Clustering Techniques using the Full Feature Space

Now, assuming we are trying to group the samples into 4 clusters (as was much more obvious after using mvlearn’s dimensionality reduction viewing method), we compare multi-view clustering techniques to single-view counterparts. Specifically, we compare 6-view spectral clustering in mvlearn with single view spectral clustering from scikit-learn. For multi-view clustering, all 6 full views of data (not the dimensionality-reduced data). For single-view comparison, we concatenate these 6 full
views into a single large matrix, the same as what we did before for PCA.

Since we have the true class labels, we assess the clustering accuracy with a homogeneity score.


[6]:






from mvlearn.cluster import MultiviewSpectralClustering

mv_clust = MultiviewSpectralClustering(n_clusters=4, affinity='nearest_neighbors')
mvlearn_cluster_labels = mv_clust.fit_predict(Xs)

# Test the accuracy of the clustering
from sklearn.metrics import homogeneity_score
mv_score = homogeneity_score(y, mvlearn_cluster_labels)
print('Multi-view homogeneity score: {0:.3f}'.format(mv_score))

# Use function defined at beginning of notebook to rearrange the labels
# for easier visual comparison to true labeled plot
mvlearn_cluster_labels = rearrange_labels(y, mvlearn_cluster_labels)

# Visualize the clusters in the 2-dimensional space
quick_visualize(Xs, labels=mvlearn_cluster_labels, title="Predicted Clusters",
                ax_ticks=False, ax_labels=False, scatter_kwargs=sca_kwargs)













Multi-view homogeneity score: 0.962











[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_14_1.png]




To compare to single-view methods, we concatenate the 6 views we used for co-clustering into one data matrix, and then perform spectral clustering using the scikit-learn library. From the figure and cluster scores that are produced, we can see that single-view spectral clustering is unable to perform as well as the multi-view version.


[7]:






from sklearn.cluster import SpectralClustering

# Concatenate views and cluster
X_clustering = X_viewing
clust = SpectralClustering(n_clusters=4, affinity='nearest_neighbors')
sklearn_cluster_labels = clust.fit_predict(X_clustering)

# Test the accuracy of the clustering
sk_score = homogeneity_score(y, sklearn_cluster_labels)
print('Single-view homogeneity score: {0:.3f}'.format(sk_score))

# Rearrange for easier visual comparison to true label plot
sklearn_cluster_labels = rearrange_labels(y, sklearn_cluster_labels)

# Use PCA for dimensionality reduction on the naive single view
pca = PCA(n_components=2)
pca_X = pca.fit_transform(X_viewing)

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], c=sklearn_cluster_labels, **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("Predicted Clusters")
plt.show()













Single-view homogeneity score: 0.703











[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_16_1.png]










          

      

      

    

  

    
      
          
            
  

None


Co-Training 2-View Semi-Supervised Classification


[1]:






import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier

from mvlearn.semi_supervised import CTClassifier
from mvlearn.datasets import load_UCImultifeature








Load the UCI Multiple Digit Features Dataset as an Example for Semi-Supervised Learning

To simulate a semi-supervised learning scenario, randomly remove 98% of the labels.


[2]:






data, labels = load_UCImultifeature(select_labeled=[0,1])

# Use only the first 2 views as an example
View0, View1 = data[0], data[1]

# Split both views into testing and training
View0_train, View0_test, labels_train, labels_test = train_test_split(View0, labels, test_size=0.33, random_state=42)
View1_train, View1_test, labels_train, labels_test = train_test_split(View1, labels, test_size=0.33, random_state=42)

# Randomly remove all but 4 of the labels
np.random.seed(6)
remove_idx = np.random.rand(len(labels_train),) < 0.98
labels_train[remove_idx] = np.nan
not_removed = np.where(remove_idx==False)
print("Remaining labeled sample labels: " + str(labels_train[not_removed]))













Remaining labeled sample labels: [1. 0. 1. 0.]









Co-Training on 2 Views vs. Single View Semi-Supervised Learning

Here, we use the default co-training classifier, which uses Gaussian naive bayes classifiers for both views. We compare its performance to the single-view semi-supervised setting with the same basic classifiers, and with the naive technique of concatenating the two views and performing single view learning.

In this case, concatenating the two views does not improve the performance over the better view. Multiview cotraining outperforms them all.


[3]:






############## Single view semi-supervised learning ##############
#-----------------------------------------------------------------
gnb0 = GaussianNB()
gnb1 = GaussianNB()
gnb2 = GaussianNB()

# Train on only the examples with labels
gnb0.fit(View0_train[not_removed,:].squeeze(), labels_train[not_removed])
y_pred0 = gnb0.predict(View0_test)
gnb1.fit(View1_train[not_removed,:].squeeze(), labels_train[not_removed])
y_pred1 = gnb1.predict(View1_test)
# Concatenate the 2 views for naive "multiview" learning
View01_train = np.hstack((View0_train[not_removed,:].squeeze(), View1_train[not_removed,:].squeeze()))
View01_test = np.hstack((View0_test, View1_test))
gnb2.fit(View01_train, labels_train[not_removed])
y_pred2 = gnb2.predict(View01_test)

print("Single View Accuracy on First View: {0:.3f}\n".format(accuracy_score(labels_test, y_pred0)))
print("Single View Accuracy on Second View: {0:.3f}\n".format(accuracy_score(labels_test, y_pred1)))
print("Naive Concatenated View Accuracy: {0:.3f}\n".format(accuracy_score(labels_test, y_pred2)))


######### Multi-view co-training semi-supervised learning #########
#------------------------------------------------------------------
# Train a CTClassifier on all the labeled and unlabeled training data
ctc = CTClassifier()
ctc.fit([View0_train, View1_train], labels_train)
y_pred_ct = ctc.predict([View0_test, View1_test])

print("Co-Training Accuracy on 2 Views: {0:.3f}".format(accuracy_score(labels_test, y_pred_ct)))













Single View Accuracy on First View: 0.568

Single View Accuracy on Second View: 0.591

Naive Concatenated View Accuracy: 0.591

Co-Training Accuracy on 2 Views: 0.992









Select Different Base Classifiers for the Views and Change the CTClassifier fit() parameters

Now, we use a random forest classifier with different attributes for each view. Furthermore, we manually select the number of positive (p) and negative (n) examples chosen each round in the co-training process, and we define the unlabeled pool size to draw them from and the number of iterations of training to perform.

In this case, concatenating the two views outperforms single view methods, but multiview cotraining still performs the best.


[4]:






############## Single view semi-supervised learning ##############
#-----------------------------------------------------------------
rfc0 = RandomForestClassifier(n_estimators=100, bootstrap=True)
rfc1 = RandomForestClassifier(n_estimators=6, bootstrap=False)
rfc2 = RandomForestClassifier(n_estimators=100, bootstrap=False)

# Train on only the examples with labels
rfc0.fit(View0_train[not_removed,:].squeeze(), labels_train[not_removed])
y_pred0 = rfc0.predict(View0_test)
rfc1.fit(View1_train[not_removed,:].squeeze(), labels_train[not_removed])
y_pred1 = rfc1.predict(View1_test)
# Concatenate the 2 views for naive "multiview" learning
View01_train = np.hstack((View0_train[not_removed,:].squeeze(), View1_train[not_removed,:].squeeze()))
View01_test = np.hstack((View0_test, View1_test))
rfc2.fit(View01_train, labels_train[not_removed])
y_pred2 = rfc2.predict(View01_test)

print("Single View Accuracy on First View: {0:.3f}\n".format(accuracy_score(labels_test, y_pred0)))
print("Single View Accuracy on Second View: {0:.3f}\n".format(accuracy_score(labels_test, y_pred1)))
print("Naive Concatenated View Accuracy: {0:.3f}\n".format(accuracy_score(labels_test, y_pred2)))

######### Multi-view co-training semi-supervised learning #########
#------------------------------------------------------------------
rfc0 = RandomForestClassifier(n_estimators=100, bootstrap=True)
rfc1 = RandomForestClassifier(n_estimators=6, bootstrap=False)
ctc = CTClassifier(rfc0, rfc1, p=2, n=2, unlabeled_pool_size=20, num_iter=100)
ctc.fit([View0_train, View1_train], labels_train)
y_pred_ct = ctc.predict([View0_test, View1_test])

print("Co-Training Accuracy: {0:.3f}".format(accuracy_score(labels_test, y_pred_ct)))













Single View Accuracy on First View: 0.902

Single View Accuracy on Second View: 0.871

Naive Concatenated View Accuracy: 0.977

Co-Training Accuracy: 0.992









Get the prediction probabilities for all the examples


[5]:






y_pred_proba = ctc.predict_proba([View0_test, View1_test])
print("Full y_proba shape = " + str(y_pred_proba.shape))
print("\nFirst 10 class probabilities:\n")
print(y_pred_proba[:10,:])













Full y_proba shape = (132, 2)

First 10 class probabilities:

[[1.         0.        ]
 [0.945      0.055     ]
 [0.005      0.995     ]
 [0.09       0.91      ]
 [0.16833333 0.83166667]
 [0.995      0.005     ]
 [0.955      0.045     ]
 [0.955      0.045     ]
 [0.28       0.72      ]
 [0.925      0.075     ]]












          

      

      

    

  

    
      
          
            
  

None


Cotraining classification performance in simulated multiview scenarios


	Experimental Setup



	Performance when one view is totally redundant



	Performance when one view is inseparable



	Performance when labeled data is excellent



	Performance when labeled data is not very separable



	Performance when data is overlapping



	Performance as labeled data proportion (essentially sample size) is varied






[43]:






import numpy as np
import matplotlib.pyplot as plt
import matplotlib

import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.decomposition import PCA

from mvlearn.semi_supervised import CTClassifier
from mvlearn.datasets import load_UCImultifeature

from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier








Function to create 2 class data

This function is used to generate examples for 2 classes from multivariate normal distributions. Once the examples are generated, it splits them into training and testing sets and returns the needed information


[44]:






def create_data(seed, class2_mean_center, view1_var, view2_var, N_per_class, view2_class2_mean_center=1):

    np.random.seed(seed)

    view1_mu0 = np.zeros(2,)
    view1_mu1 = class2_mean_center  * np.ones(2,) #
    view1_cov = view1_var*np.eye(2)

    view2_mu0 = np.zeros(2,)
    view2_mu1 = view2_class2_mean_center * np.ones(2,)
    view2_cov = view2_var*np.eye(2)

    view1_class0 = np.random.multivariate_normal(view1_mu0, view1_cov, size=N_per_class)
    view1_class1 = np.random.multivariate_normal(view1_mu1, view1_cov, size=N_per_class)

    view2_class0 = np.random.multivariate_normal(view2_mu0, view2_cov, size=N_per_class)
    view2_class1 = np.random.multivariate_normal(view2_mu1, view2_cov, size=N_per_class)

    View1 = np.concatenate((view1_class0, view1_class1))
    View2 = np.concatenate((view2_class0, view2_class1))
    Labels = np.concatenate((np.zeros(N_per_class,), np.ones(N_per_class,)))

    # Split both views into testing and training
    View1_train, View1_test, labels_train_full, labels_test_full = train_test_split(View1, Labels, test_size=0.3, random_state=42)
    View2_train, View2_test, labels_train_full, labels_test_full = train_test_split(View2, Labels, test_size=0.3, random_state=42)

    labels_train = labels_train_full.copy()
    labels_test = labels_test_full.copy()

    return View1_train, View2_train, labels_train, labels_train.copy(), View1_test, View2_test, labels_test











Function to do predictions on single or concatenated view data

This function is used create classifiers for single or concatenated views and return their predictions.


[45]:






def single_view_class(v1_train, labels_train, v1_test, labels_test, v2_train, v2_test, v2_solver, v2_penalty):

    gnb0 = LogisticRegression()
    gnb1 = LogisticRegression(solver=v2_solver, penalty=v2_penalty)
    gnb2 = LogisticRegression()

    # Train on only the examples with labels
    gnb0.fit(v1_train, labels_train)
    y_pred0 = gnb0.predict(v1_test)

    gnb1.fit(v2_train, labels_train)
    y_pred1 = gnb1.predict(v2_test)

    accuracy_view1 = (accuracy_score(labels_test, y_pred0))
    accuracy_view2 = (accuracy_score(labels_test, y_pred1))

    # Concatenate views in naive way and train model
    combined_labeled = np.hstack((v1_train, v2_train))
    combined_test = np.hstack((v1_test, v2_test))

    gnb2.fit(combined_labeled, labels_train)
    y_pred2 = gnb2.predict(combined_test)

    accuracy_combined = (accuracy_score(labels_test, y_pred2))

    return accuracy_view1, accuracy_view2, accuracy_combined










Function to create 2 class scatter plots with labeled data shown

This function is used to create scatter plots of the 2 class data as well as show the samples that are labeled, making it easier to understand what distributions the simulations are dealing with


[46]:






def scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train):

    idx_train_0 = np.where(labels_train_full==0)
    idx_train_1 = np.where(labels_train_full==1)

    labeled_idx_class0 = not_removed[np.where(labels_train[not_removed]==0)]
    labeled_idx_class1 = not_removed[np.where(labels_train[not_removed]==1)]

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))

    ax[0].scatter(View1_train[idx_train_0,0], View1_train[idx_train_0,1])
    ax[0].scatter(View1_train[idx_train_1,0], View1_train[idx_train_1,1])
    ax[0].scatter(View1_train[labeled_idx_class0,0], View1_train[labeled_idx_class0,1], s=300, marker='X')
    ax[0].scatter(View1_train[labeled_idx_class1,0], View1_train[labeled_idx_class1,1], s=300, marker='X')
    ax[0].set_title('One Randomization of View 1')
    ax[0].legend(('Class 0', 'Class 1', 'Labeled Class 0', 'Labeled Class 1'))
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(View2_train[idx_train_0,0], View2_train[idx_train_0,1])
    ax[1].scatter(View2_train[idx_train_1,0], View2_train[idx_train_1,1])
    ax[1].scatter(View2_train[labeled_idx_class0,0], View1_train[labeled_idx_class0,1], s=300, marker='X')
    ax[1].scatter(View2_train[labeled_idx_class1,0], View1_train[labeled_idx_class1,1], s=300, marker='X')
    ax[1].set_title('One Randomization of View 2')
    ax[1].legend(('Class 0', 'Class 1', 'Labeled Class 0', 'Labeled Class 1'))
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()








Performance on simulated data






General Experimental Setup


	Below are the results from simulated data testing of the cotraining classifier with different classification problems (class distributions)


	Results are averaged over 20 randomizations, where a single randomization means using a new seed to generate examples from 2 class distributions and then randomly selecting about 1% of the training data as labeled and leaving the rest unlabeled


	500 examples per class, with 70% used for training and 30% for testing


	For a randomization, train 4 classifiers


	Classifier trained on view 1 labeled data only


	Classifier trained on view 2 labeled data only


	Classifier trained on concatenation of labeled features from views 1 and 2


	multivew CTClassifier trained on views 1 and 2


	For this, test classification accuracy after different numbers of cotraining iterations to see trajectory of classification accuracy










	Classification Method:


	Logistic Regression


	‘l2’ penalty for view 1 and ‘l1’ penalty for view 2 to ensure independence between the classifiers in the views. This is important because a key aspect of cotraining is view independence, which can either be enforced by completely independent data, or by using an independent classifier for each view, such as using different parameters with the same type of classifier, or two different classification algorithms.















Performance when classes are well separated and labeled examples are randomly chosen

Here, the 2 class distributions are the following - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [1, 1] - Class 1 covariance: .2eye(2)

Labeled examples are chosen randomly from the training set


[47]:






randomizations = 20
N_per_class = 500
view2_penalty = 'l1'
view2_solver = 'liblinear'

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        View1_train, View2_train, labels_train, labels_train_full, View1_test, View2_test, labels_test = create_data(seed, 1, .2, .2, N_per_class)

        # randomly remove some labels
        np.random.seed(11)
        remove_idx = np.random.rand(len(labels_train),) < .99
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:
            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only do this calculation once, since not affected by number of iterations
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)

        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))

acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]












<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_10_1.png]





[48]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When Views are Independent and Labeled Samples are Random\nCoTraining Outperforms Single Views and Naive Concatenation')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_11_0.png]







Performance when one view is totally redundant

Here, the 2 class distributions are the following - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [1, 1] - Class 1 covariance: .2eye(2)

Views 1 and 2 hold the exact same samples

Labeled examples are chosen randomly from the training set


[49]:






randomizations = 20
N_per_class = 500
view2_penalty = 'l1'
view2_solver = 'liblinear'

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        View1_train, View2_train, labels_train, labels_train_full, View1_test, View2_test, labels_test = create_data(seed, 1, .2, .2, N_per_class)

        View2_train = View1_train.copy()
        View2_test = View1_test.copy()

        # randomly remove some labels
        np.random.seed(11)
        remove_idx = np.random.rand(len(labels_train),) < .99
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:
            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only do this calculation once, since not affected by number of iterations
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)

        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))

acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]













<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_13_1.png]





[50]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When One View is Completely Redundant\nCoTraining Performs Worse Than\nSingle View or View Concatenation')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_14_0.png]







Performance when one view is inseparable

Here, the 2 class distributions are the following for the first view - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [1, 1] - Class 1 covariance: .2eye(2)

For the second view: - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [0, 0] - Class 1 covariance: .2eye(2)

Labeled examples are chosen randomly from the training set


[51]:






randomizations = 20
N_per_class = 500
view2_penalty = 'l1'
view2_solver = 'liblinear'

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        View1_train, View2_train, labels_train, labels_train_full, View1_test, View2_test, labels_test = create_data(seed,
                                                                                                                     1,
                                                                                                                     .2,
                                                                                                                     .2,
                                                                                                                     N_per_class,
                                                                                                                     view2_class2_mean_center=0)

        # randomly remove some labels
        np.random.seed(11)
        remove_idx = np.random.rand(len(labels_train),) < .99
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:
            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only do this calculation once, since not affected by number of iterations
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)

        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))

acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]













<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_16_1.png]





[52]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When One View is Uninformative\nCoTraining Performs Worse Than Single View')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_17_0.png]







Performance when labeled data is excellent

Here, the 2 class distributions are the following - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [1, 1] - Class 1 covariance: .2eye(2)

Labeled examples are chosen to be very close to the mean of their respective class - Normally distributed around their class mean with standard deviation 0.05 in both dimensions


[53]:






randomizations = 20
N_per_class = 500
num_perfect = 3
perfect_scale = 0.05
view2_penalty = 'l1'
view2_solver = 'liblinear'

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        np.random.seed(seed)

        view1_mu0 = np.zeros(2,)
        view1_mu1 = np.ones(2,)
        view1_cov = .2*np.eye(2)

        view2_mu0 = np.zeros(2,)
        view2_mu1 = np.ones(2,)
        view2_cov = .2*np.eye(2)

        # generage perfect examples
        perfect_class0_v1 = view1_mu0 + np.random.normal(loc=0, scale=perfect_scale, size=view1_mu0.shape)
        perfect_class0_v2 = view1_mu0 + np.random.normal(loc=0, scale=perfect_scale, size=view1_mu0.shape)
        perfect_class1_v1 = view1_mu1 + np.random.normal(loc=0, scale=perfect_scale, size=view1_mu1.shape)
        perfect_class1_v2 = view1_mu1 + np.random.normal(loc=0, scale=perfect_scale, size=view1_mu1.shape)
        for p in range(1, num_perfect):
            perfect_class0_v1 = np.vstack((perfect_class0_v1, view1_mu0 + np.random.normal(loc=0, scale=0.01, size=view1_mu0.shape)))
            perfect_class0_v2 = np.vstack((perfect_class0_v2, view1_mu0 + np.random.normal(loc=0, scale=0.01, size=view1_mu0.shape)))
            perfect_class1_v1 = np.vstack((perfect_class1_v1, view1_mu1 + np.random.normal(loc=0, scale=0.01, size=view1_mu1.shape)))
            perfect_class1_v2 = np.vstack((perfect_class1_v2, view1_mu1 + np.random.normal(loc=0, scale=0.01, size=view1_mu1.shape)))
        perfect_labels = np.zeros(num_perfect,)
        perfect_labels = np.concatenate((perfect_labels, np.ones(num_perfect,)))


        view1_class0 = np.random.multivariate_normal(view1_mu0, view1_cov, size=N_per_class)
        view1_class1 = np.random.multivariate_normal(view1_mu1, view1_cov, size=N_per_class)

        view2_class0 = np.random.multivariate_normal(view2_mu0, view2_cov, size=N_per_class)
        view2_class1 = np.random.multivariate_normal(view2_mu1, view2_cov, size=N_per_class)

        View1 = np.concatenate((view1_class0, view1_class1))
        View2 = np.concatenate((view2_class0, view2_class1))
        Labels = np.concatenate((np.zeros(N_per_class,), np.ones(N_per_class,)))


        # Split both views into testing and training
        View1_train, View1_test, labels_train_full, labels_test_full = train_test_split(View1, Labels, test_size=0.3, random_state=42)
        View2_train, View2_test, labels_train_full, labels_test_full = train_test_split(View2, Labels, test_size=0.3, random_state=42)

        labels_train = labels_train_full.copy()
        labels_test = labels_test_full.copy()


        # Add the perfect examples
        View1_train = np.vstack((View1_train, perfect_class0_v1, perfect_class1_v1))
        View2_train = np.vstack((View2_train, perfect_class0_v2, perfect_class1_v2))
        labels_train = np.concatenate((labels_train, perfect_labels))

        # randomly remove all but perfect labeled samples
        remove_idx = [True for i in range(len(labels_train)-2*num_perfect)]
        for i in range(2*num_perfect):
            remove_idx.append(False)

        #remove_idx = [False if i < (len(labels_train)-2*num_perfect) else True for i in range(len(labels_train))]
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]
        not_removed = np.arange(len(labels_train)-2*num_perfect, len(labels_train))

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:
            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only once, since not affected by "num iters"
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)


        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))

acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]












<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_19_1.png]





[54]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When Labeled Data is Extremely Clean\nCoTraining Outperforms Single Views\nbut Naive Concatenation Performs Better')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_20_0.png]







Performance when labeled data is not very separable

Here, the 2 class distributions are the following - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [1, 1] - Class 1 covariance: .2eye(2)

Labeled examples are chosen to be far from their respective means according to a uniform distribution in 2 dimensions between .2 and .75 away from the x1 or x2 coordinate of the mean


[55]:






randomizations = 20
N_per_class = 500
num_perfect = 2
uniform_min = 0.2
uniform_max = 0.75
view2_penalty = 'l1'
view2_solver = 'liblinear'

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        np.random.seed(seed)

        view1_mu0 = np.zeros(2,)
        view1_mu1 = np.ones(2,)
        view1_cov = .2*np.eye(2)

        view2_mu0 = np.zeros(2,)
        view2_mu1 = np.ones(2,)
        view2_cov = .2*np.eye(2)

        # generage bad examples
        perfect_class0_v1 = view1_mu0 + np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)
        perfect_class0_v2 = view1_mu0 + np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)
        perfect_class1_v1 = view1_mu1 - np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)
        perfect_class1_v2 = view1_mu1 - np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)
        for p in range(1, num_perfect):
            perfect_class0_v1 = np.vstack((perfect_class0_v1, view1_mu0 + np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)))
            perfect_class0_v2 = np.vstack((perfect_class0_v2, view1_mu0 + np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)))
            perfect_class1_v1 = np.vstack((perfect_class1_v1, view1_mu1 - np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)))
            perfect_class1_v2 = np.vstack((perfect_class1_v2, view1_mu1 - np.random.uniform(uniform_min, uniform_max, size=view1_mu0.shape)))
        perfect_labels = np.zeros(num_perfect,)
        perfect_labels = np.concatenate((perfect_labels, np.ones(num_perfect,)))

        view1_class0 = np.random.multivariate_normal(view1_mu0, view1_cov, size=N_per_class)
        view1_class1 = np.random.multivariate_normal(view1_mu1, view1_cov, size=N_per_class)

        view2_class0 = np.random.multivariate_normal(view2_mu0, view2_cov, size=N_per_class)
        view2_class1 = np.random.multivariate_normal(view2_mu1, view2_cov, size=N_per_class)

        View1 = np.concatenate((view1_class0, view1_class1))
        View2 = np.concatenate((view2_class0, view2_class1))
        Labels = np.concatenate((np.zeros(N_per_class,), np.ones(N_per_class,)))


        # Split both views into testing and training
        View1_train, View1_test, labels_train_full, labels_test_full = train_test_split(View1, Labels, test_size=0.3, random_state=42)
        View2_train, View2_test, labels_train_full, labels_test_full = train_test_split(View2, Labels, test_size=0.3, random_state=42)

        labels_train = labels_train_full.copy()
        labels_test = labels_test_full.copy()


        # Add the perfect examples
        View1_train = np.vstack((View1_train, perfect_class0_v1, perfect_class1_v1))
        View2_train = np.vstack((View2_train, perfect_class0_v2, perfect_class1_v2))
        labels_train = np.concatenate((labels_train, perfect_labels))

        # randomly remove all but perfect labeled samples
        remove_idx = [True for i in range(len(labels_train)-2*num_perfect)]
        for i in range(2*num_perfect):
            remove_idx.append(False)


        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]
        not_removed = np.arange(len(labels_train)-2*num_perfect, len(labels_train))

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:

            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only once, since not affected by "num iters"
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)


        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))


acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]












<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_22_1.png]





[56]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When Labeled Examples are Not Representative\nCoTraining Does Poorly, as Expected')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_23_0.png]







Performance when data is overlapping

Here, the 2 class distributions are the following - Class 0 mean: [0, 0] - Class 0 covariance: .2eye(2) - Class 1 mean: [0, 0] - Class 1 covariance: .2eye(2)

Labeled examples are chosen randomly from the training set


[57]:






randomizations = 20
N_per_class = 500
view2_penalty = 'l1'
view2_solver = 'liblinear'
class2_mean_center = 0 # 1 would make this identical to first test

N_iters = np.arange(1, 202, 15)
acc_ct = [[] for _ in N_iters]
acc_view1 = []
acc_view2 = []
acc_combined = []


for count, iters in enumerate(N_iters):

    for seed in range(randomizations):

        ######################### Create Data ###########################
        View1_train, View2_train, labels_train, labels_train_full, View1_test, View2_test, labels_test = create_data(seed,
                                                                                                                     0,
                                                                                                                     .2,
                                                                                                                     .2,
                                                                                                                     N_per_class,
                                                                                                                     view2_class2_mean_center=class2_mean_center)

        # randomly remove some labels
        np.random.seed(11)
        remove_idx = np.random.rand(len(labels_train),) < .99
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]

        # make sure both classes have at least 1 labeled example
        if len(set(labels_train[not_removed])) != 2:
            continue

        if seed == 0 and count == 0:

            scatterplot_classes(not_removed, labels_train, labels_train_full, View1_train, View2_train)

        ############## Single view semi-supervised learning ##############
        # Only once, since not affected by "num iters"
        if count == 0:
            accuracy_view1, accuracy_view2, accuracy_combined = single_view_class(View1_train[not_removed,:].squeeze(),
                                                                                  labels_train[not_removed],
                                                                                  View1_test,
                                                                                  labels_test,
                                                                                  View2_train[not_removed,:].squeeze(),
                                                                                  View2_test,
                                                                                  view2_solver,
                                                                                  view2_penalty)

            acc_view1.append(accuracy_view1)
            acc_view2.append(accuracy_view2)
            acc_combined.append(accuracy_combined)

        ##################### Multiview ########################################
        gnb0 = LogisticRegression()
        gnb1 = LogisticRegression(solver=view2_solver, penalty=view2_penalty)
        ctc = CTClassifier(gnb0, gnb1, num_iter=iters)
        ctc.fit([View1_train, View2_train], labels_train)
        y_pred_ct = ctc.predict([View1_test, View2_test])
        acc_ct[count].append((accuracy_score(labels_test, y_pred_ct)))

acc_view1 = np.mean(acc_view1)
acc_view2 = np.mean(acc_view2)
acc_combined = np.mean(acc_combined)
acc_ct = [sum(row) / float(len(row)) for row in acc_ct]












<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_25_1.png]





[58]:






# make a figure from the data
plt.figure()
plt.plot(N_iters, acc_view1*np.ones(N_iters.shape))
plt.plot(N_iters, acc_view2*np.ones(N_iters.shape))
plt.plot(N_iters, acc_combined*np.ones(N_iters.shape))
plt.plot(N_iters, acc_ct)
plt.legend(('View 1', 'View 2', 'Naive Concatenated', 'multiview'))
plt.ylabel("Average Accuracy Over {} Randomizations".format(randomizations))
plt.xlabel('Iterations of Co-Training')
plt.title('When Both Views Have Overlapping Data\nCoTraining Performs with Chance, as Expected')
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_26_0.png]







Performance as labeled data proportion (essentially sample size) is varied


[16]:






data, labels = load_UCImultifeature(select_labeled=[0,1])

# Use only the first 2 views as an example
View0, View1 = data[0], data[1]

# Split both views into testing and training
View0_train, View0_test, labels_train_full, labels_test_full = train_test_split(View0, labels, test_size=0.33, random_state=42)
View1_train, View1_test, labels_train_full, labels_test_full = train_test_split(View1, labels, test_size=0.33, random_state=42)

# Do PCA to visualize data
pca = PCA(n_components = 2)
View0_pca = pca.fit_transform(View0_train)
View1_pca = pca.fit_transform(View1_train)

View0_pca_class0 = View0_pca[np.where(labels_train_full==0)[0],:]
View0_pca_class1 = View0_pca[np.where(labels_train_full==1)[0],:]
View1_pca_class0 = View1_pca[np.where(labels_train_full==0)[0],:]
View1_pca_class1 = View1_pca[np.where(labels_train_full==1)[0],:]


# plot the views
plt.figure()
fig, ax = plt.subplots(1,2, figsize=(14,5))

ax[0].scatter(View0_pca_class0[:,0], View0_pca_class0[:,1])
ax[0].scatter(View0_pca_class1[:,0], View0_pca_class1[:,1])
ax[0].set_title('2 Component PCA of Full View 1 (Fourier Coefficients) Training Data')
ax[0].legend(('Class 0', 'Class 1'))

ax[1].scatter(View1_pca_class0[:,0], View1_pca_class0[:,1])
ax[1].scatter(View1_pca_class1[:,0], View1_pca_class1[:,1])
ax[1].set_title('2 Component PCA of Full View 2 (Profile Correlations) Training Data')
ax[1].legend(('Class 0', 'Class 1'))

plt.show()












<Figure size 432x288 with 0 Axes>












[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_28_1.png]





[23]:






N_labeled_full = []
acc_ct_full = []
acc_v0_full = []
acc_v1_full = []

iters = 500

for i, num in zip(np.linspace(0.03, .30, 20), (np.linspace(4, 30, 20)).astype(int)):

    N_labeled = []
    acc_ct = []
    acc_v0 = []
    acc_v1 = []

    View0_train, View0_test, labels_train_full, labels_test_full = train_test_split(View0, labels, test_size=0.33, random_state=42)
    View1_train, View1_test, labels_train_full, labels_test_full = train_test_split(View1, labels, test_size=0.33, random_state=42)

    for seed in range(iters):

        labels_train = labels_train_full.copy()
        labels_test = labels_test_full.copy()

        # Randomly remove all but a small percentage of the labels
        np.random.seed(2*seed) #6
        remove_idx = np.random.rand(len(labels_train),) < 1-i
        labels_train[remove_idx] = np.nan
        not_removed = np.where(remove_idx==False)[0]
        not_removed = not_removed[:num]
        N_labeled.append(len(labels_train[not_removed])/len(labels_train))
        if len(set(labels_train[not_removed])) != 2:
            continue

        if Reverse_Labels:
            labels_one_idx = np.argwhere(labels_train == 1)
            labels_zero_idx = np.argwhere(labels_train == 0)

        ############## Single view semi-supervised learning ##############
        #-----------------------------------------------------------------
        gnb0 = GaussianNB()
        gnb1 = GaussianNB()

        # Train on only the examples with labels
        gnb0.fit(View0_train[not_removed,:].squeeze(), labels_train[not_removed])

        y_pred0 = gnb0.predict(View0_test)
        gnb1.fit(View1_train[not_removed,:].squeeze(), labels_train[not_removed])
        y_pred1 = gnb1.predict(View1_test)

        acc_v0.append(accuracy_score(labels_test, y_pred0))
        acc_v1.append(accuracy_score(labels_test, y_pred1))

        ######### Multi-view co-training semi-supervised learning #########
        #------------------------------------------------------------------
        # Train a CTClassifier on all the labeled and unlabeled training data
        ctc = CTClassifier()
        ctc.fit([View0_train, View1_train], labels_train)
        y_pred_ct = ctc.predict([View0_test, View1_test])
        acc_ct.append(accuracy_score(labels_test, y_pred_ct))

    acc_ct_full.append(np.mean(acc_ct))
    acc_v0_full.append(np.mean(acc_v0))
    acc_v1_full.append(np.mean(acc_v1))
    N_labeled_full.append(np.mean(N_labeled))








[28]:






matplotlib.rcParams.update({'font.size': 12})

plt.figure()
plt.plot(N_labeled_full, acc_v0_full)
plt.plot(N_labeled_full, acc_v1_full)
plt.plot(N_labeled_full, acc_ct_full,"r")
plt.legend(("Fourier Coefficients Only:\nsklearn Gaussian Naive Bayes", "Profile Correlations Only:\nsklearn Gaussian Naive Bayes", "Using Both Views:\nmultiview CTClassifier (default)"))
plt.title("Semi-Supervised Classification Accuracy with\nCTClassifier (default Naive Bayes)")
plt.xlabel("Labeled Data Proportion")
plt.ylabel("Average Accuracy on Test Data: {} Trials".format(iters))
#plt.savefig('AvgAccuracy_CTClassifier.png', bbox_inches='tight')
plt.show()













[image: ../../_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_30_0.png]










          

      

      

    

  

    
      
          
            
  

None


Co-Training 2-View Semi-Supervised Regression

This tutorial demonstrates co-training regression on a semi-supervised regression task. The data only has targets for 20% of its samples, and although it does not have multiple views, co-training regression can still be beneficial. In order to get this benefit, the CTRegressor object is initialized with 2 different types of KNeighborsRegressors (in this case, the power parameter for the Minkowski metric is different in each view). Then, the single view of data (X) is passed in twice as if it
shows two different views. The MSE of the predictions on test data from the resulting CTRegressor is compared to the MSE from using each of the individual KNeighborsRegressor objects after fitting on the labeled samples of the training data. The MSE shows that the CTRegressor does better than using either KNeighborsRegressor alone in this semi-supervised case.


[1]:






import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsRegressor
from sklearn.metrics import mean_squared_error
from mpl_toolkits import mplot3d
%matplotlib inline
from mvlearn.semi_supervised import CTRegressor








Generating 3D Mexican Hat Data


[2]:






N_samples = 3750
N_test = 1250
labeled_portion = .2

seed = 42
np.random.seed(seed)

# Generating the 3D Mexican Hat data
X = np.random.uniform(-4*np.pi, 4*np.pi, size=(N_samples,2))
y = ((np.sin(np.linalg.norm(X, axis=1)))/np.linalg.norm(X, axis=1)).squeeze()
X_test = np.random.uniform(-4*np.pi, 4*np.pi, size=(N_test,2))
y_test = ((np.sin(np.linalg.norm(X_test, axis=1)))/np.linalg.norm(X_test, axis=1)).squeeze()

y_train = y.copy()
np.random.seed(1)

# Randomly selecting the index which are to be made nan
selector = np.random.uniform(size=(N_samples,))
selector[selector > labeled_portion] = np.nan
y_train[np.isnan(selector)] = np.nan
lab_samples = ~np.isnan(y_train)

# Indexes which are not null
not_null = [i for i in range(len(y_train)) if not np.isnan(y_train[i])]










Visualization of Data

Here, we plot the labeled samples that we have.


[3]:






fig = plt.figure()
ax = plt.axes(projection="3d")

z_points = y[lab_samples]
x_points = X[lab_samples, 0]
y_points = X[lab_samples, 1]
ax.scatter3D(x_points, y_points, z_points)
plt.show()












[image: ../../_images/tutorials_semi_supervised_cotraining_regression_exampleusage_6_0.png]







Co-Training on 2 views vs Single view training

Here, we are using the KNeighborsRegressor as the estimators for regression. We are using the default value for all the parameters except the p value in order to make the estimators independent. The same p values are used for training the corresponding single view model.


[4]:






############## Single view semi-supervised learning ##############
#-----------------------------------------------------------------

knn1 = KNeighborsRegressor(p = 2)
knn2 = KNeighborsRegressor(p = 5)

# Train on only the examples with labels
knn1.fit(X[not_null], y[not_null])
pred1 = knn1.predict(X_test)
error1 = mean_squared_error(y_test, pred1)

knn2.fit(X[not_null], y[not_null])
pred2 = knn2.predict(X_test)
error2 = mean_squared_error(y_test, pred2)

print("MSE of single view with knn1 {}\n".format(error1))
print("MSE of single view with knn2 {}\n".format(error2))

######### Multi-view co-training semi-supervised learning #########
#------------------------------------------------------------------

estimator1 = KNeighborsRegressor(p = 2)
estimator2 = KNeighborsRegressor(p = 5)
knn = CTRegressor(estimator1, estimator2, random_state = 26)

# Train a CTClassifier on all the labeled and unlabeled training data
knn.fit([X, X], y_train)
pred_multi_view = knn.predict([X_test, X_test])
error_multi_view = mean_squared_error(y_test, pred_multi_view)

print("MSE of cotraining semi supervised regression {}\n".format(error_multi_view))













MSE of single view with knn1 0.0016125954957153382

MSE of single view with knn2 0.001724891163476389

MSE of cotraining semi supervised regression 0.001508364708398609








[ ]:




















          

      

      

    

  

    
      
          
            
  

None


Generalized Canonical Correlation Analysis (GCCA)


[23]:






from mvlearn.datasets import load_UCImultifeature
from mvlearn.embed import GCCA
from mvlearn.plotting import crossviews_plot
from graspy.plot import pairplot

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline








Load Data

We load three views from the UCI handwritten digits multi-view data set. Specificallym the Profile correlations, Karhunen-Love coefficients, and pixel averages from 2x3 windows.


[92]:






# Load full dataset, labels not needed
Xs, y = load_UCImultifeature()
Xs = [Xs[1], Xs[2], Xs[3]]








[93]:






# Check data
print(f'There are {len(Xs)} views.')
print(f'There are {Xs[0].shape[0]} observations')
print(f'The feature sizes are: {[X.shape[1] for X in Xs]}')













There are 3 views.
There are 2000 observations
The feature sizes are: [216, 64, 240]







Embed Views


[94]:






# Create GCCA object and embed the
gcca = GCCA()
Xs_latents = gcca.fit_transform(Xs)








[95]:






print(f'The feature sizes are: {[X.shape[1] for X in Xs_latents]}')













The feature sizes are: [5, 5, 5]











Plot the first two views against each other

The top three dimensions from the latents spaces of the profile correlation and pixel average views are plotted against each other. However, their latent spaces are influenced the the Karhunen-Love coefficients, not plotted.


[106]:






crossviews_plot(Xs_latents[[0,2]], dimensions=[0,1,2], labels=y, cmap='Set1', title=f'Profile correlations vs Pixel Averages', scatter_kwargs={'alpha':0.4, 's':2.0})












[image: ../../_images/tutorials_embed_gcca_tutorial_9_0.png]










          

      

      

    

  

    
      
          
            
  

None


GCCA vs PCA


[1]:






from mvlearn.embed import GCCA
import matplotlib.pyplot as plt
import numpy as np
import scipy
%matplotlib inline
import seaborn as sns
from scipy.sparse.linalg import svds








[2]:






def get_train_test(n=100, mu=0, var=1, var2=1, nviews=3,m=1000):
    # Creates train and test data with a
    # - shared signal feature ~ N(mu, var1)
    # - an independent noise feature ~ N(mu, var2)
    # - independent noise feautures ~ N(0, 1)
    np.random.seed(0)

    X_TRAIN = np.random.normal(mu,var,(n,1))
    X_TEST = np.random.normal(mu,var,(n,1))

    Xs_train = []
    Xs_test = []
    for i in range(nviews):
        X_train = np.hstack((np.random.normal(0,1,(n,i)),
                             X_TRAIN,
                             np.random.normal(0,1,(n,m-2-i)),
                             np.random.normal(0,var2,(n,1))
                            ))
        X_test = np.hstack((np.random.normal(0,1,(n,i)),
                            X_TEST,
                            np.random.normal(0,1,(n,m-2-i)),
                            np.random.normal(0,var2,(n,1))
                           ))

        Xs_train.append(X_train)
        Xs_test.append(X_test)

    return(Xs_train,Xs_test)








Positive Test


Setting:

1 high variance shared signal feature, 1 high variance noise feature


[3]:






nviews = 3
Xs_train, Xs_test = get_train_test(var=10,var2=10,nviews=nviews,m=1000)








[5]:






gcca = GCCA(n_components=2)
gcca.fit(Xs_train)
Xs_hat = gcca.transform(Xs_test)










Results:


	GCCA results show high correlation on testing data





[6]:






np.corrcoef(np.array(Xs_hat)[:,:,0])








[6]:






array([[1.        , 0.99698235, 0.99687182],
       [0.99698235, 1.        , 0.99689792],
       [0.99687182, 0.99689792, 1.        ]])








[7]:






Xs_hat = []
for i in range(len(Xs_train)):
    _,_,vt = svds(Xs_train[i],k=1)
    Xs_hat.append(Xs_test[i] @ vt.T)








	PCA selects shared dimension but also high noise dimension and so weaker correlation on testing data





[8]:






np.corrcoef(np.array(Xs_hat)[:,:,0])








[8]:






array([[ 1.        , -0.54014795,  0.51173297],
       [-0.54014795,  1.        , -0.98138902],
       [ 0.51173297, -0.98138902,  1.        ]])












Negative Test


Setting:

1 low variance shared feature


[9]:






nviews = 3
Xs_train, Xs_test = get_train_test(var=1,var2=1,nviews=nviews,m=1000)








[10]:






gcca = GCCA(n_components = 2)
gcca.fit(Xs_train)
Xs_hat = gcca.transform(Xs_test)










Results:


	GCCA fails to select shared feature and so shows low correlation on testing data





[11]:






np.corrcoef(np.array(Xs_hat)[:,:,0])








[11]:






array([[ 1.        ,  0.31254995, -0.02208907],
       [ 0.31254995,  1.        ,  0.13722633],
       [-0.02208907,  0.13722633,  1.        ]])








[12]:






Xs_hat = []
for i in range(len(Xs_train)):
    _,_,vt = svds(Xs_train[i],k=1)
    Xs_hat.append(Xs_test[i] @ vt.T)








	PCA fails to select shared feature and shows low correlation on testing data





[13]:






np.corrcoef(np.array(Xs_hat)[:,:,0])








[13]:






array([[1.        , 0.01016507, 0.0888701 ],
       [0.01016507, 1.        , 0.03812276],
       [0.0888701 , 0.03812276, 1.        ]])















          

      

      

    

  

    
      
          
            
  

None


Kernel CCA (KCCA)

This algorithm runs KCCA on two views of data. The kernel implementations, parameter ‘ktype’, are linear, polynomial and gaussian. Polynomial kernel has two parameters: ‘constant’, ‘degree’. Gaussian kernel has one parameter: ‘sigma’.

Useful information, like canonical correlations between transformed data and statistical tests for significance of these correlations can be computed using the get_stats() function of the KCCA object.

When initializing KCCA, you can also initialize the following parameters: the number of canonical components ‘n_components’, the regularization parameter ‘reg’, the decomposition type ‘decomposition’, and the decomposition method ‘method’. There are two decomposition types: ‘full’ and ‘icd’. In some cases, ICD will run faster than the full decomposition at the cost of performance. The only method as of now is ‘kettenring-like’.


[1]:






import numpy as np
import sys
sys.path.append("../../..")

from mvlearn.embed.kcca import KCCA
from mvlearn.plotting.plot import crossviews_plot
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import stats
import warnings
import matplotlib.cbook
warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation)







Function creates Xs, a list of two views of data with a linear relationship, polynomial relationship (2nd degree) and a gaussian (sinusoidal) relationship.


[2]:






def make_data(kernel, N):
    # # # Define two latent variables (number of samples x 1)
    latvar1 = np.random.randn(N,)
    latvar2 = np.random.randn(N,)

    # # # Define independent components for each dataset (number of observations x dataset dimensions)
    indep1 = np.random.randn(N, 4)
    indep2 = np.random.randn(N, 5)

    if kernel == "linear":
        x = 0.25*indep1 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2)).T
        y = 0.25*indep2 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2, latvar1)).T

        return [x,y]

    elif kernel == "poly":
        x = 0.25*indep1 + 0.75*np.vstack((latvar1**2, latvar2**2, latvar1**2, latvar2**2)).T
        y = 0.25*indep2 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2, latvar1)).T

        return [x,y]

    elif kernel == "gaussian":
        t = np.random.uniform(-np.pi, np.pi, N)
        e1 = np.random.normal(0, 0.05, (N,2))
        e2 = np.random.normal(0, 0.05, (N,2))

        x = np.zeros((N,2))
        x[:,0] = t
        x[:,1] = np.sin(3*t)
        x += e1

        y = np.zeros((N,2))
        y[:,0] = np.exp(t/4)*np.cos(2*t)
        y[:,1] = np.exp(t/4)*np.sin(2*t)
        y += e2

        return [x,y]








Linear kernel implementation

Here we show how KCCA with a linear kernel can uncover the highly correlated latent distribution of the 2 views which are related with a linear relationship, and then transform the data into that latent space. We use an 80-20, train-test data split to develop the embedding.

Also, we use statistical tests (Wilk’s Lambda) to check the significance of the canonical correlations.


[3]:






np.random.seed(1)
Xs = make_data('linear', 100)
Xs_train = [Xs[0][:80],Xs[1][:80]]
Xs_test = [Xs[0][80:],Xs[1][80:]]

kcca_l = KCCA(n_components = 4, reg = 0.01)
kcca_l.fit(Xs_train)
linearkcca = kcca_l.transform(Xs_test)








Original Data Plotted


[4]:






crossviews_plot(Xs, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_9_0.png]







Transformed Data Plotted


[5]:






crossviews_plot(linearkcca, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_11_0.png]




Now, we assess the canonical correlations achieved on the testing data, and the p-values for significance using a Wilk’s Lambda test


[6]:






stats = kcca_l.get_stats()

print("Below are the canonical correlations and the p-values of a Wilk's Lambda test for each components:")
print(stats['r'])
print(stats['pF'])














Below are the canonical correlations and the p-values of a Wilk's Lambda test for each components:
[ 0.92365255  0.79419444 -0.2453487  -0.0035017 ]
[0.00400878 0.25898906 0.99013426 0.99991417]











Polynomial kernel implementation

Here we show how KCCA with a polynomial kernel can uncover the highly correlated latent distribution of the 2 views which are related with a polynomial relationship, and then transform the data into that latent space.


[7]:






Xsp = make_data("poly", 150)
kcca_p = KCCA(ktype ="poly", degree = 2.0, n_components = 4, reg=0.001)
polykcca = kcca_p.fit_transform(Xsp)








Original Data Plotted


[8]:






crossviews_plot(Xsp, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_18_0.png]







Transformed Data Plotted


[9]:






crossviews_plot(polykcca, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_20_0.png]




Now, we assess the canonical correlations achieved on the testing data


[10]:






stats = kcca_p.get_stats()

print("Below are the canonical correlations for each components:")
print(stats['r'])













Below are the canonical correlations for each components:
[0.96738396 0.94500285 0.63334922 0.57870821]











Gaussian Kernel Implementation

Here we show how KCCA with a gaussian kernel can uncover the highly correlated latent distribution of the 2 views which are related with a sinusoidal relationship, and then transform the data into that latent space.


[11]:






Xsg = make_data("gaussian", 100)
Xsg_train = [Xsg[0][:20],Xsg[1][:20]]
Xsg_test = [Xsg[0][20:],Xsg[1][20:]]








[12]:






kcca_g = KCCA(ktype ="gaussian", sigma = 1.0, n_components = 2, reg = 0.01)
kcca_g.fit(Xsg)
gausskcca = kcca_g.transform(Xsg)








Original Data Plotted


[13]:






crossviews_plot(Xsg, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_28_0.png]







Transformed Data Plotted


[14]:






crossviews_plot(gausskcca, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_tutorial_30_0.png]




Now, we assess the canonical correlations achieved on the testing data


[15]:






stats = kcca_g.get_stats()

print("Below are the canonical correlations for each components:")
print(stats['r'])













Below are the canonical correlations for each components:
[0.99887253 0.99762762]














          

      

      

    

  

    
      
          
            
  

None


Kernel CCA: ICD Method

Kernel matrices grow exponentially with the size of the data. There are immense storage and run-time constraints that arise when working with large datasets. The Incomplete Cholesky Decomposition (ICD) looks for a low rank approximation of the Cholesky decomposition of the kernel matrix. This reduces storage requirements from O(n^2) to O(nm), where n is the number of subjects (rows) and m is the rank of the kernel matrix. This also reduces the run-time from O(n^3) to O(nm^2).


[35]:






import numpy as np
import sys
sys.path.append("../../..")

from mvlearn.embed.kcca import KCCA
from mvlearn.plotting.plot import crossviews_plot
import matplotlib.pyplot as plt
%matplotlib inline
from scipy import stats
import warnings
import matplotlib.cbook
import time
warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation)








[2]:






def make_data(kernel, N):
    # # # Define two latent variables (number of samples x 1)
    latvar1 = np.random.randn(N,)
    latvar2 = np.random.randn(N,)

    # # # Define independent components for each dataset (number of observations x dataset dimensions)
    indep1 = np.random.randn(N, 4)
    indep2 = np.random.randn(N, 5)

    if kernel == "linear":
        x = 0.25*indep1 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2)).T
        y = 0.25*indep2 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2, latvar1)).T

        return [x,y]

    elif kernel == "poly":
        x = 0.25*indep1 + 0.75*np.vstack((latvar1**2, latvar2**2, latvar1**2, latvar2**2)).T
        y = 0.25*indep2 + 0.75*np.vstack((latvar1, latvar2, latvar1, latvar2, latvar1)).T

        return [x,y]

    elif kernel == "gaussian":
        t = np.random.uniform(-np.pi, np.pi, N)
        e1 = np.random.normal(0, 0.05, (N,2))
        e2 = np.random.normal(0, 0.05, (N,2))

        x = np.zeros((N,2))
        x[:,0] = t
        x[:,1] = np.sin(3*t)
        x += e1

        y = np.zeros((N,2))
        y[:,0] = np.exp(t/4)*np.cos(2*t)
        y[:,1] = np.exp(t/4)*np.sin(2*t)
        y += e2

        return [x,y]








Full Decomposition vs ICD on Sample Data

ICD is run on two views of data that each have two dimensions that are sinuisoidally related. The data has 100 samples and thus the fully decomposed kernel matrix would have dimensions (100, 100). Instead we implement ICD with a kernel matrix of rank 50 (mrank = 50).


[7]:






np.random.seed(1)
Xsg = make_data('gaussian', 100)








[9]:






crossviews_plot(Xsg, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_icd_tutorial_7_0.png]





Full Decomposition


[8]:






kcca_g = KCCA(ktype ="gaussian", n_components = 2, reg = 0.01)
kcca_g.fit(Xsg)
gausskcca = kcca_g.transform(Xsg)








[10]:






crossviews_plot(gausskcca, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_icd_tutorial_10_0.png]





[11]:






(gr1, _) = stats.pearsonr(gausskcca[0][:,0], gausskcca[1][:,0])
(gr2, _) = stats.pearsonr(gausskcca[0][:,1], gausskcca[1][:,1])

print("Below are the canonical correlation of the two components:")
print(gr1,gr2)













Below are the canonical correlation of the two components:
0.9988060118791638 0.9972876357732628









ICD Decomposition


[12]:






kcca_g_icd = KCCA(ktype = "gaussian", sigma = 1.0, n_components = 2, reg = 0.01, decomp = 'icd', mrank = 50)
icd_g = kcca_g_icd.fit_transform(Xsg)








[13]:






crossviews_plot(icd_g, ax_ticks=False, ax_labels=True, equal_axes=True)












[image: ../../_images/tutorials_embed_kcca_icd_tutorial_14_0.png]





[15]:






(icdr1, _) = stats.pearsonr(icd_g[0][:,0], icd_g[1][:,0])
(icdr2, _) = stats.pearsonr(icd_g[0][:,1], icd_g[1][:,1])

print("Below are the canonical correlation of the two components:")
print(icdr1,icdr2)













Below are the canonical correlation of the two components:
0.998805983433145 0.997287542632157






The canonical correlations of full vs ICD (mrank=50) are very similar!






ICD Kernel Rank vs. Canonical Correlation

We can observe the relationship between the ICD kernel rank and canonical correlation of the first canonical component.


[32]:






can_corrs = []
rank = [1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100]

for i in rank:
    kcca_g_icd = KCCA(ktype = "gaussian", sigma = 1.0, n_components = 2, reg = 0.01, decomp = 'icd', mrank = i)
    icd_g = kcca_g_icd.fit_transform(Xsg)
    (icdr1, _) = stats.pearsonr(icd_g[0][:,0], icd_g[1][:,0])
    can_corrs.append(icdr1)








[34]:






plt.plot(rank, can_corrs)
plt.xlabel('Rank')
plt.ylabel('Canonical Correlation')








[34]:






Text(0, 0.5, 'Canonical Correlation')












[image: ../../_images/tutorials_embed_kcca_icd_tutorial_20_1.png]




We observe that around rank=10-15 we achieve the same canonical correlation as the fully decomposed kernel matrix (rank=100).




ICD Kernel Rank vs Run-Time

We can observe the relationship between the ICD kernel rank and run-time to fit and transform the two views. We average the run-time of each rank over 5 trials.


[38]:






run_time = []

for i in rank:
    run_time_sample = []
    for a in range(5):
        kcca_g_icd = KCCA(ktype = "gaussian", sigma = 1.0, n_components = 2, reg = 0.01, decomp = 'icd', mrank = i)
        start = time.time()
        icd_g = kcca_g_icd.fit_transform(Xsg)
        run_time_sample.append(time.time()-start)
    run_time.append(sum(run_time_sample) / len(run_time_sample))








[39]:






plt.plot(rank, run_time)
plt.xlabel('Rank')
plt.ylabel('Run-Time')








[39]:






Text(0, 0.5, 'Run-Time')












[image: ../../_images/tutorials_embed_kcca_icd_tutorial_25_1.png]




From the rank vs canonical correlation analysis in the previous section, we discovered that a rank of 10-15 will preserve the canonical correlation (accuracy). We can see that at a rank of 10-15, we can get an order of magnitude decrease in run-time compared to a rank of 100 (full decomposition).







          

      

      

    

  

    
      
          
            
  

None


Deep CCA (DCCA)

In this example, we show how to used Deep CCA to uncover latent correlations between views.


[1]:






from mvlearn.embed import DCCA

from mvlearn.datasets import GaussianMixture
from mvlearn.plotting import crossviews_plot
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline








Polynomial-Transformed Latent Correlation

Latent variables are sampled from two multivariate Gaussians with equal prior probability. Then a polynomial transformation is applied and noise is added independently to both the transformed and untransformed latents.


[3]:






n_samples = 2000
centers = [[0,1], [0,-1]]
covariances = [np.eye(2), np.eye(2)]
GM = GaussianMixture(n_samples, centers, covariances, random_state=42,
                     shuffle=True, shuffle_random_state=42)
GM = GM.sample_views(transform='poly', n_noise=2)







The latent data is plotted against itself to reveal the underlying distribtution.


[4]:






crossviews_plot([GM.latent, GM.latent], labels=GM.y, title='Latent Variable', equal_axes=True)












[image: ../../_images/tutorials_embed_dcca_tutorial_6_0.png]




The noisy latent variable (view 1) is plotted against the transformed latent variable (view 2), an example of a dataset with two views.


[5]:






# Split data into train and test segments
Xs_train = []
Xs_test = []
max_row = int(GM.Xs[0].shape[0] * .7)
Xs, y = GM.get_Xy(latents=False)
for X in Xs:
    Xs_train.append(X[:max_row, :])
    Xs_test.append(X[max_row:, :])
y_train = y[:max_row]
y_test = y[max_row:]








[6]:






crossviews_plot(Xs_test, labels=y_test, title='Testing Data View 1 vs. View 2 (Polynomial Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_embed_dcca_tutorial_9_0.png]





Fit DCCA model to uncover latent distribution

The output dimensionality is still 4.


[7]:






# Define parameters and layers for deep model
features1 = Xs_train[0].shape[1] # Feature sizes
features2 = Xs_train[1].shape[1]
layers1 = [1024, 512, 4] # nodes in each hidden layer and the output size
layers2 = [1024, 512, 4]

dcca = DCCA(input_size1=features1, input_size2=features2, n_components=4,
            layer_sizes1=layers1, layer_sizes2=layers2)
dcca.fit(Xs_train)
Xs_transformed = dcca.transform(Xs_test)










Visualize the transformed data

We can see that it has uncovered the latent correlation between views.


[8]:






crossviews_plot(Xs_transformed, labels=y_test, title='Transformed Testing Data View 1 vs. View 2 (Polynomial Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_embed_dcca_tutorial_13_0.png]









Sinusoidal-Transformed Latent Correlation

Following the same procedure as above, latent variables are sampled from two multivariate Gaussians with equal prior probability. This time, a sinusoidal transformation is applied and noise is added independently to both the transformed and untransformed latents.


[9]:






n = 2000
mu = [[0,1], [0,-1]]
sigma = [np.eye(2), np.eye(2)]
class_probs = [0.5, 0.5]
GM = GaussianMixture(mu,sigma,n,class_probs=class_probs, random_state=42,
                     shuffle=True, shuffle_random_state=42)
GM = GM.sample_views(transform='sin', n_noise=2)








[10]:






# Split data into train and test segments
Xs_train = []
Xs_test = []
max_row = int(GM.Xs[0].shape[0] * .7)
for X in GM.Xs:
    Xs_train.append(X[:max_row, :])
    Xs_test.append(X[max_row:, :])
y_train = GM.y[:max_row]
y_test = GM.y[max_row:]








[11]:






crossviews_plot(Xs_test, labels=y_test, title='Testing Data View 1 vs. View 2 (Polynomial Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_embed_dcca_tutorial_17_0.png]





Fit DCCA model to uncover latent distribution

The output dimensionality is still 4.


[12]:






# Define parameters and layers for deep model
features1 = Xs_train[0].shape[1] # Feature sizes
features2 = Xs_train[1].shape[1]
layers1 = [1024, 512, 4] # nodes in each hidden layer and the output size
layers2 = [1024, 512, 4]

dcca = DCCA(input_size1=features1, input_size2=features2, n_components=4,
            layer_sizes1=layers1, layer_sizes2=layers2)
dcca.fit(Xs_train)
Xs_transformed = dcca.transform(Xs_test)










Visualize the transformed data

We can see that it has uncovered the latent correlation between views.


[13]:






crossviews_plot(Xs_transformed, labels=y_test, title='Transformed Testing Data View 1 vs. View 2 (Sinusoidal Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_embed_dcca_tutorial_21_0.png]












          

      

      

    

  

    
      
          
            
  

None


CCA Variants Comparison

A comparison of Kernel Canonical Correlation Analysis (KCCA) with three different types of kernel to Deep Canonical Correlation Analysis (DCCA). Each learns and computes kernels suitable for different situations. The point of this tutorial is to illustrate, in toy examples, the rough intuition as to when such methods work well and generate linearly correlated projections.

The simulated latent data has two signal dimensions draw from independent Gaussians. Two views of data were derived from this.


	View 1: The latent data.


	View 2: A transformation of the latent data.




To each view, two additional independent Gaussian noise dimensions were added.

Each 2x2 grid of subplots in the figure corresponds to a transformation and either the raw data or a CCA variant. The x-axes are the data from view 1 and the y-axes are the data from view 2. Plotted are the correlations between the signal dimensions of the raw views and the top two components of each view after a CCA variant transformation. Linearly correlated plots on the diagonals of the 2x2 grids indicate that the CCA method was able to successfully learn the underlying functional
relationship between the two views.


[2]:






from mvlearn.embed import KCCA, DCCA
from mvlearn.datasets import GaussianMixture
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
%matplotlib inline
import seaborn as sns








[3]:






## Make Latents
n_samples = 200
centers = [[0,1], [0,-1]]
covariances = 2*np.array([np.eye(2), np.eye(2)])
GM_train = GaussianMixture(n_samples, centers, covariances)

## Test
GM_test = GaussianMixture(n_samples, centers, covariances)

## Make 2 views
n_noise = 2
transforms = ['linear', 'poly', 'sin']

Xs_train = []
Xs_test = []
for transform in transforms:
    GM_train.sample_views(transform=transform, n_noise=n_noise)
    GM_test.sample_views(transform=transform, n_noise=n_noise)

    Xs_train.append(GM_train.get_Xy()[0])
    Xs_test.append(GM_test.get_Xy()[0])








[4]:






## Plotting parameters
labels = GM_test.latent[:,0]
cmap = matplotlib.colors.ListedColormap(sns.diverging_palette(240, 10, n=len(labels), center='light').as_hex())
cmap = 'coolwarm'

method_labels = ['Raw Views', 'Linear KCCA', 'Polynomial KCCA', 'Gaussian KCCA', 'DCCA']
transform_labels = ['Linear Transform', 'Polynomial Transform', 'Sinusoidal Transform']








[5]:






input_size1, input_size2 = Xs_train[0][0].shape[1], Xs_train[0][1].shape[1]
outdim_size = min(Xs_train[0][0].shape[1], 2)
layer_sizes1 = [256, 256, outdim_size]
layer_sizes2 = [256, 256, outdim_size]
methods = [KCCA(ktype='linear', reg = 0.1, degree=2.0, constant=0.1, n_components = 2),
           KCCA(ktype='poly', reg = 0.1, degree=2.0, constant=0.1, n_components = 2),
           KCCA(ktype='gaussian', reg = 1.0, sigma=2.0, n_components = 2),
           DCCA(input_size1, input_size2, outdim_size, layer_sizes1, layer_sizes2, epoch_num=400)
]








[15]:






fig, axes = plt.subplots(3*2, 5*2, figsize=(20,12))
sns.set_context('notebook')

for r,transform in enumerate(transforms):
    axs = axes[2*r:2*r+2,:2]
    for i,ax in enumerate(axs.flatten()):
        dim2 = int(i / 2)
        dim1 = i % 2
        ax.scatter(
            Xs_test[r][0][:, dim1],
            Xs_test[r][1][:, dim2],
            cmap=cmap,
            c=labels,
        )
        ax.set_xticks([], [])
        ax.set_yticks([], [])
        if dim1 == 0:
            ax.set_ylabel(f"View 2 Dim {dim2+1}")
        if dim1 == 0 and dim2 == 0:
            ax.text(-0.5, -0.1, transform_labels[r], transform=ax.transAxes, fontsize=18, rotation=90, verticalalignment='center')
        if dim2 == 1 and r == len(transforms)-1:
            ax.set_xlabel(f"View 1 Dim {dim1+1}")
        if i == 0 and r == 0:
            ax.set_title(method_labels[r], {'position':(1.11,1), 'fontsize':18})

    for c,method in enumerate(methods):
        axs = axes[2*r:2*r+2,2*c+2:2*c+4]
        Xs = method.fit(Xs_train[r]).transform(Xs_test[r])
        for i,ax in enumerate(axs.flatten()):
            dim2 = int(i / 2)
            dim1 = i % 2
            ax.scatter(
                Xs[0][:, dim1],
                Xs[1][:, dim2],
                cmap=cmap,
                c=labels,
            )
            if dim2 == 1 and r == len(transforms)-1:
                ax.set_xlabel(f"View 1 Dim {dim1+1}")
            if i == 0 and r == 0:
                ax.set_title(method_labels[c+1], {'position':(1.11,1), 'fontsize':18})
            ax.axis("equal")
            ax.set_xticks([], [])
            ax.set_yticks([], [])












[image: ../../_images/tutorials_embed_cca_comparison_5_0.svg]







          

      

      

    

  

    
      
          
            
  

None


Multiview Multidimensional Scaling (MVMDS)

MVMDS is a useful multiview dimensionaltiy reduction algorithm that allows the user to perform Multidimensional Scaling on multiple views at the same time.


[1]:






from mvlearn.datasets import load_UCImultifeature
from mvlearn.embed import MVMDS

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA

%matplotlib inline








Load Data

Data comes from UCI Digits Data. Contains 6 views and classifications of numbers 0-9


[2]:






# Load full dataset, labels not needed
Xs, y = load_UCImultifeature()








[3]:






# Check data
print(f'There are {len(Xs)} views.')
print(f'There are {Xs[0].shape[0]} observations')
print(f'The feature sizes are: {[X.shape[1] for X in Xs]}')













There are 6 views.
There are 2000 observations
The feature sizes are: [76, 216, 64, 240, 47, 6]









Plotting MVMDS vs PCA

Here we demonstrate the superior performance of MVMDS on multi-view data against the performance of PCA. To use all the views’ data in PCA, we concatenate the views into a larger data matrix.

Examples of 10-class and 4 class data are shown. MVMDS learns principle components that are common across views, and end up spreading the data better.


[4]:






# MVMDS reduction
mvmds = MVMDS(n_components=2)
Xs_mvmds_reduced = mvmds.fit_transform(Xs)

# Concatenate views then PCA for comparison
Xs_concat = Xs[0]
for X in Xs[1:]:
    Xs_concat = np.hstack((Xs_concat, X))
pca = PCA(n_components=2)
Xs_pca_reduced = pca.fit_transform(Xs_concat)








[5]:






fig, ax = plt.subplots(1, 2, figsize=(14,6))
ax[0].scatter(Xs_mvmds_reduced[:,0], Xs_mvmds_reduced[:,1], c=y)
ax[0].set_title("MVMDS Reduced Data (10-class)")
ax[0].set_xlabel("Component 1")
ax[0].set_ylabel("Component 2")
ax[1].scatter(Xs_pca_reduced[:,0], Xs_pca_reduced[:,1], c=y)
ax[1].set_title("PCA Reduced Data (10-class)")
ax[1].set_xlabel("Component 1")
ax[1].set_ylabel("Component 2")

plt.show()












[image: ../../_images/tutorials_embed_mvmds_tutorial_7_0.png]





[6]:






# 4-class data
Xs_4, y_4 = load_UCImultifeature(select_labeled=[0,1,2,3])








[7]:






# MVMDS reduction
mvmds = MVMDS(n_components=2)
Xs_mvmds_reduced = mvmds.fit_transform(Xs_4)

# Concatenate views then PCA for comparison
Xs_concat = Xs_4[0]
for X in Xs_4[1:]:
    Xs_concat = np.hstack((Xs_concat, X))
pca = PCA(n_components=2)
Xs_pca_reduced = pca.fit_transform(Xs_concat)








[8]:






fig, ax = plt.subplots(1, 2, figsize=(14,6))
ax[0].scatter(Xs_mvmds_reduced[:,0], Xs_mvmds_reduced[:,1], c=y_4)
ax[0].set_title("MVMDS Reduced Data (4-class)")
ax[0].set_xlabel("Component 1")
ax[0].set_ylabel("Component 2")
ax[1].scatter(Xs_pca_reduced[:,0], Xs_pca_reduced[:,1], c=y_4)
ax[1].set_title("PCA Reduced Data (4-class)")
ax[1].set_xlabel("Component 1")
ax[1].set_ylabel("Component 2")

plt.show()












[image: ../../_images/tutorials_embed_mvmds_tutorial_10_0.png]







Components of MVMDS Views Without Noise

Here we will take into account all of the views and perform MVMDS. This dataset does not contain noise and each view performs decently well in predicting the number. Therefore we will expect the common components created by MVMDS to create a strong representation of the data (Note MVMDS only uses the fit_transform function to properly return the correct components)

In the cell after, PCA on one view is shown for comparison. It can be seen that MVMDS seems to perform better in this instance.

Note: Each color represents a unique number class


[9]:






#perform mvmds
mvmds = MVMDS(n_components=5)
Components = mvmds.fit_transform(Xs)








[11]:






# Plot MVMDS images

plt.style.use('seaborn')

color_map = [sns.color_palette("Set2", 10)[int(i)] for i in y]

fig, axes = plt.subplots(4, 4, figsize = (12,12), sharey=True, sharex=True)

for i in range(4):
    for j in range(4):
        if i != j:
            axes[i,j].scatter(x = Components[:, i], y = Components[:, j], alpha = 1, label = y, color = color_map)
        axes[3, j].set_xlabel(f'Component {j+1}')
    axes[i,0].set_ylabel(f'Component {i+1}')


ax = fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
ax.grid(False)
ax.set_title('First 4 MVMDS Components Computed With 6 Views (No Noise)')








[11]:






Text(0.5, 1.0, 'First 4 MVMDS Components Computed With 6 Views (No Noise)')












[image: ../../_images/tutorials_embed_mvmds_tutorial_13_1.png]





[12]:






#PCA Plots

pca = PCA(n_components=6)
pca_Components = pca.fit_transform(Xs[0])

fig, axes = plt.subplots(4, 4, figsize = (12,12), sharey=True, sharex=True)

for i in range(4):
    for j in range(4):
        if i != j:
            axes[i,j].scatter(x = pca_Components[:, i], y = pca_Components[:, j], alpha = 1, label = y, color = color_map)
        axes[3, j].set_xlabel(f'Component {j+1}')
    axes[i,0].set_ylabel(f'Component {i+1}')

ax = fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
ax.grid(False)
ax.set_title('First 4 PCA Components Computed With 1 View')








[12]:






Text(0.5, 1.0, 'First 4 PCA Components Computed With 1 View')












[image: ../../_images/tutorials_embed_mvmds_tutorial_14_1.png]










          

      

      

    

  

    
      
          
            
  

None


MVMDS vs PCA

MVMDS is a useful multiview dimensionaltiy reduction algorithm that allows the user to perform Multidimensional Scaling on multiple views at the same time. In this notebook, we see how MVMDS performs in clustering randomly generated data and compare this to single-view classical multidimensional scaling which is equivalent to Principal Component Analysis (PCA).


Imports


[1]:






from mvlearn.datasets import load_UCImultifeature
from mvlearn.embed import MVMDS

import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.decomposition import PCA
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics.cluster import adjusted_rand_score

%matplotlib inline













C:\Users\arman\Anaconda3\envs\mvdev\lib\site-packages\sklearn\utils\deprecation.py:144: FutureWarning: The sklearn.mixture.gaussian_mixture module is  deprecated in version 0.22 and will be removed in version 0.24. The corresponding classes / functions should instead be imported from sklearn.mixture. Anything that cannot be imported from sklearn.mixture is now part of the private API.
  warnings.warn(message, FutureWarning)









Loading Data

Creates a dataset with 5 unique views. Each is represented by blobs distributed that are distributed around 6 random center points with a fixed variance.There are 100 points around each center point. The number of features of these blobs varies and the random states are assigned. Each view shares outcome values ranging from 0-5


[2]:






def data():

    N = 50
    D1 = 5
    D2 = 7
    D3 = 4

    np.random.seed(seed=5)
    first = np.random.rand(N,D1)
    second = np.random.rand(N,D2)
    third = np.random.rand(N,D3)
    random_views = [first, second, third]
    samp_views = [np.array([[1,4,0,6,2,3],
                        [2,5,7,1,4,3],
                        [9,8,5,4,5,6]]),
                    np.array([[2,6,2,6],
                        [9,2,7,3],
                        [9,6,5,2]])]

    first_wrong = np.random.rand(N,D1)
    second_wrong = np.random.rand(N-1,D1)
    wrong_views = [first_wrong, second_wrong]

    dep_views = [np.array([[1,2,3],[1,2,3],[1,2,3]]),
                 np.array([[1,2,3],[1,2,3],[1,2,3]])]

    return {'wrong_views' : wrong_views, 'dep_views' : dep_views,
            'random_views' : random_views,
            'samp_views': samp_views}








[6]:






data = data








[13]:






from sklearn.metrics import euclidean_distances








[11]:






def john(data):
    print(data)
john








[11]:






<function __main__.john(data)>








[19]:






comp








[19]:






array([[-0.81330129,  0.07216426,  0.17407766],
       [ 0.34415456, -0.74042171,  0.69631062],
       [ 0.46914673,  0.66825745, -0.69631062]])








[20]:






comp2








[20]:






array([[-0.81330129,  0.07216426,  0.57735027],
       [ 0.34415456, -0.74042171,  0.57735027],
       [ 0.46914673,  0.66825745,  0.57735027]])








[21]:






mvmds = MVMDS(len(data()['samp_views'][0]))
comp = mvmds.fit_transform(data()['samp_views'])
comp2 = np.array([[-0.81330129,  0.07216426,  0.17407766],
       [0.34415456, -0.74042171,  0.69631062],
       [0.46914673,  0.66825745, -0.69631062]])

for i in range(comp.shape[0]):
    for j in range(comp.shape[1]):
        assert comp[i,j]-comp2[i,j] < .000001








[2]:






p = np.array([100,100,100,100,100,100])

#creates the blobs
j = make_blobs(n_features=12,n_samples=p, cluster_std= 4,random_state= 1)
k = make_blobs(n_features = 27,n_samples = p,cluster_std = 3,random_state=23)
l = make_blobs(n_features = 22,n_samples = p,cluster_std = 5,random_state=35)
m = make_blobs(n_features = 32,n_samples = p,cluster_std = 5,random_state=52)
n = make_blobs(n_features = 15,n_samples = p,cluster_std = 7,random_state=2)


v1 = j[0]
v2 = k[0]
v3 = l[0]
v4 = m[0]
v5 = n[0]

Views = [v1,v2,v3,v4,v5]








[3]:






# This creates a single-view dataset by concatenating the multiple views as features of the first view (Naive multi-view)

arrays = []

for i in [j,k,l,m,n]:
    df = pd.DataFrame(i[0])
    df['Class'] = i[1]
    df = df.sort_values(by = ['Class'])
    y = np.array(df['Class'])
    df = df.drop(['Class'],axis = 1)
    arrays.append(np.array(df))

Views = arrays

Views_concat = np.hstack((arrays[0],arrays[1],arrays[2],arrays[3],arrays[4]))










Plot original Data

As you can see. The blobs are not distinguishable in 2-Dimensions


[4]:






ax = plt.subplot(111)
plt.scatter(v1[:,0],v1[:,1],c = y)
plt.title('First Two Features of First View')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')








[4]:






Text(0, 0.5, 'Feature 2')












[image: ../../_images/tutorials_embed_mvmds_proof_14_1.png]





MVMDS Views Without Noise

Here we will take into account all of the views and perform MVMDS. This dataset does not contain noise and each view performs decently well in predicting the class. Therefore we will expect the common components created by MVMDS to create a strong representation of the data (Note MVMDS only uses the fit_transform function to properly return the correct components)

In the cell after, PCA on the concatenated single-view is shown for comparison. It can be seen that MVMDS performs better in this instance.

Note: Each color represents a unique number class


[16]:






#Fits MVMDS
mvmds = MVMDS(n_components=2,distance=False)
fit = mvmds.fit_transform(Views)

#Fits PCA
pca = PCA(n_components=2)
fit2 = pca.fit_transform(Views_concat)








[6]:






#Fits K-Means to MVMDS for cluster comparison
kmeans = KMeans(n_clusters=6, random_state=0).fit(fit)
labels1 = kmeans.labels_

fig, axes = plt.subplots(1,2, figsize=(12,6))

#Plots MVMDS components
axes[0].scatter(fit[:,0],fit[:,1],c = y)
axes[0].set_title('MVMDS Components')
axes[0].set_xlabel('1st Component')
axes[0].set_ylabel('2nd Component')
axes[0].set_xticks([])
axes[0].set_yticks([])

#Fits K-Means to PCA for cluster comparison
kmeans = KMeans(n_clusters=6, random_state=0).fit(fit2)
labels2 = kmeans.labels_

#Plots PCA components
axes[1].scatter(fit2[:,0],fit2[:,1],c = y)
axes[1].set_title('PCA Naive Multiview Components')
axes[1].set_xlabel('1st Component')
axes[1].set_xticks([])
axes[1].set_yticks([])

#Comparison of ARI scores

score1 = adjusted_rand_score(labels1,y)
score2 = adjusted_rand_score(labels2,y)

print('MVMDS has an ARI score of ' + str(score1) + '. while PCA has an ARI score of ' + str(score2) +
      '. \nTherefore we can say MVMDS performs better in this instance')













MVMDS has an ARI score of 0.9840270979888018. while PCA has an ARI score of 0.9344335788597602.
Therefore we can say MVMDS performs better in this instance











[image: ../../_images/tutorials_embed_mvmds_proof_17_1.png]







MVMDS Views With Noise

Here we will create a new variable with multiple views. This variable will contain the same 5 views from before but a 6th view of strictly noise will be added to the dataset. The concatenated single-view dataset will also have this noisy view. We can expect for the common components created by MVMDS to be less representative of the data due to the substantial noise.

As we can see compared to previous cells, the noisy MVMDS components performs worse than the MVMDS components done on views without noise. When compared to PCA on the concatenated single-view with noise, MVMDS performs worse.

Note: Each color represents a unique number class


[7]:






noisy_view = np.random.rand(n[0].shape[0],n[0].shape[1])

Views_Noise = Views
Views_Noise.append(noisy_view)
Views_concat_Noise = np.hstack((Views_concat,noisy_view))

#Fits MVMDS
mvmds = MVMDS(n_components=2)
fit = mvmds.fit_transform(Views_Noise)

#Fits PCA
pca = PCA(n_components=2)
fit2 = pca.fit_transform(Views_concat_Noise)








[8]:






#Fits K-Means to MVMDS for cluster comparison
kmeans = KMeans(n_clusters=6, random_state=0).fit(fit)
labels1_noise = kmeans.labels_

fig, axes = plt.subplots(1,2, figsize=(12,6))

#Plots MVMDS components
axes[0].scatter(fit[:,0],fit[:,1],c = y)
axes[0].set_title('MVMDS Components (With Noise)')
axes[0].set_xlabel('1st Component')
axes[0].set_ylabel('2nd Component')
axes[0].set_xticks([])
axes[0].set_yticks([])

#Fits K-Means to PCA for cluster comparison
kmeans = KMeans(n_clusters=6, random_state=0).fit(fit2)
labels2_noise = kmeans.labels_

#Plots PCA components
axes[1].scatter(fit2[:,0],fit2[:,1],c = y)
axes[1].set_title('PCA Naive Multiview Components (With Noise)')
axes[1].set_xlabel('1st Component')
axes[1].set_xticks([])
axes[1].set_yticks([])

#Comparison of ARI scores

score1_noise = adjusted_rand_score(labels1_noise,y)
score2_noise = adjusted_rand_score(labels2_noise,y)

print('MVMDS has an ARI score of ' + str(score1_noise) + '. while PCA has an ARI score of ' + str(score2_noise) +
      '. \nTherefore we can say PCA performs better in this instance.')













MVMDS has an ARI score of 0.6004142756032063. while PCA has an ARI score of 0.9344335788597602.
Therefore we can say PCA performs better in this instance.











[image: ../../_images/tutorials_embed_mvmds_proof_20_1.png]












          

      

      

    

  

    
      
          
            
  

None


Omnibus Embedding for Multiview Data

This demo shows you how to run Omnibus Embedding on multiview data. Omnibus embedding is originally a multigraph algorithm. The purpose of omnibus embedding is to find a Euclidean representation (latent position) of multiple graphs. The embedded latent positions live in the same canonical space allowing us to easily compare the embedded graphs to each other without aligning results. You can read more about both the implementation of Omnibus embedding used and the algorithm itself from the
graspy [https://graspy.neurodata.io/tutorials/embedding/omnibus] package.

Unlike graphs however, multiview data can consist of arbitrary arrays of different dimensions. This represents an additional challenge of comparing the information contained in each view. An effective solution is to first compute the dissimilarity matrix for each view. Assuming each view has n samples, we will be left with an n x n matrix for each view. If the distance function used to compute these matrices is symmetric, the dissimilarity matrices will also be symmetric and we are left
with “graph-like” objects. Omnibus embedding can then be applied and the resulting embeddings show whether views give similar or different information.

Below, we show the results of Omnibus embedding on multiview data when the two views are very similar and very different. We then apply Omnibus to two different views in the UCI handwritten digits dataset.


[1]:






import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
from mvlearn.embed import omnibus








Case 1: two identical views

For this setting, we generate two identical numpy matrices as our views. Since the information is identical in each view, the resulting embedded views should also be similar. We run omnibus on default parameters.


[2]:






# 100 x 50 matrices
X_1 = np.random.rand(100, 50)
X_2 = X_1.copy()

Xs = [X_1, X_2]

# Running omnibus
embedder = omnibus.Omnibus()
embeddings = embedder.fit_transform(Xs)








Visualizing the results


[3]:






Xhat1, Xhat2 = embeddings

fig, ax = plt.subplots(figsize=(10, 10))
ct = ax.scatter(Xhat1[:, 0], Xhat1[:, 1], marker='s', label = 'View 1', cmap = "tab10", s = 100)
ax.scatter(Xhat2[:, 0], Xhat2[:, 1], marker='.', label= 'View 2', cmap = "tab10", s = 100)
plt.legend(fontsize=20)

# Plot lines between matched pairs of points
for i in range(50):
    idx = np.random.randint(len(Xhat1), size=1)
    ax.plot([Xhat1[idx, 0], Xhat2[idx, 0]], [Xhat1[idx, 1], Xhat2[idx, 1]], 'black', alpha = 0.15)
plt.xlabel("Component 1", fontsize=20)
plt.ylabel("Component 2", fontsize=20)
plt.tight_layout()
ax.set_title('Latent Positions from Omnibus Embedding', fontsize=20)
plt.show()












[image: ../../_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_5_0.png]




As expected, the embeddings are identical since the views are the same.






Case 2: two unidentical views

Now let’s see what happens when the views are not identical.


[4]:






X_1 = np.random.rand(100, 50)
# Second view has different number of features
X_2 = np.random.rand(100, 100)

Xs = [X_1, X_2]

# Running omnibus
embedder = omnibus.Omnibus()
embeddings = embedder.fit_transform(Xs)








Visualizing the results


[5]:






Xhat1, Xhat2 = embeddings

fig, ax = plt.subplots(figsize=(10, 10))
ct = ax.scatter(Xhat1[:, 0], Xhat1[:, 1], marker='s', label = 'View 1', cmap = "tab10", s = 100)
ax.scatter(Xhat2[:, 0], Xhat2[:, 1], marker='.', label= 'View 2', cmap = "tab10", s = 100)
plt.legend(fontsize=20)

# Plot lines between matched pairs of points
for i in range(50):
    idx = np.random.randint(len(Xhat1), size=1)
    ax.plot([Xhat1[idx, 0], Xhat2[idx, 0]], [Xhat1[idx, 1], Xhat2[idx, 1]], 'black', alpha = 0.15)
plt.xlabel("Component 1", fontsize=20)
plt.ylabel("Component 2", fontsize=20)
plt.tight_layout()
ax.set_title('Latent Positions from Omnibus Embedding', fontsize=20)
plt.show()












[image: ../../_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_10_0.png]




Here, we see that the views are clearly separated suggeseting the views represent different information. Lines are drawn between corresponding samples in the two views.






UCI Digits Dataset

Finally, we run Omnibus on the UCI Multiple Features Digits Dataset [https://archive.ics.uci.edu/ml/datasets/Multiple+Features]. We use the Fourier coefficient and profile correlation views (View 1 and 2 respectively).


[7]:






from mvlearn.datasets.base import load_UCImultifeature

full_data, full_labels = load_UCImultifeature()
view_1 = full_data[0]
view_2 = full_data[1]

Xs = [view_1, view_2]

# Running omnibus
embedder = omnibus.Omnibus()
embeddings = embedder.fit_transform(Xs)








Visualizing the results

This time, the points in the plot are colored by digit (0-9). The marker symbols denote which view each sample is from. We randomly plot 500 samples to make the plot more readable.


[8]:






Xhat1, Xhat2 = embeddings

n = 500
idxs = np.random.randint(len(Xhat1), size=n)
Xhat1 = Xhat1[idxs, :]
Xhat2 = Xhat2[idxs, :]
labels = full_labels[idxs]


fig, ax = plt.subplots(figsize=(10, 10))
ct = ax.scatter(Xhat1[:, 0], Xhat1[:, 1], marker='s', label = 'View 1 (76 Fourier Coeffs)', c = labels, cmap = "tab10", s = 100)
ax.scatter(Xhat2[:, 0], Xhat2[:, 1], marker='o', label= 'View 2 (216 profile correlations)', c = labels, cmap = "tab10", s = 100)
plt.legend(fontsize=20)
#fig.colorbar(ct)

# Plot lines between matched pairs of points
for i in range(50):
    idx = np.random.randint(len(Xhat1), size=1)
    ax.plot([Xhat1[idx, 0], Xhat2[idx, 0]], [Xhat1[idx, 1], Xhat2[idx, 1]], 'black', alpha = 0.15)
plt.xlabel("Component 1", fontsize=20)
plt.ylabel("Component 2", fontsize=20)
plt.tight_layout()
ax.set_title('Latent Positions from Omnibus Embedding', fontsize=20)
plt.show()












[image: ../../_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_15_0.png]












          

      

      

    

  

    
      
          
            
  

None


SplitAE Embeddings on multiview MNIST data


[ ]:






!pip3 install pillow==6.2.2
!pip3 install torchvision==0.4.2








[5]:






import matplotlib.pyplot
import torch
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets
import matplotlib.pyplot as plt
import numpy as np
import PIL

#tsnecuda is a bit harder to install, if you want to use MulticoreTSNE instead (sklearn is too slow)
#then uncomment the below MulticoreTSNE line, comment out the tsnecuda line, and replace
#all TSNE() lines with TSNE(n_jobs=12), where 12 is replaced with the number of cores on your machine

#from MulticoreTSNE import MulticoreTSNE as TSNE
from tsnecuda import TSNE
from mvlearn.embed import SplitAE








[6]:






# Setup plotting

%matplotlib inline
plt.style.use("default")
%config InlineBackend.figure_format = 'svg'







Let’s make a simple two view dataset based on MNIST as described in http://proceedings.mlr.press/v37/wangb15.pdf .

The “underlying data” of our views is a digit from 0-9 – e.g. “2” or “7” or “9”.

The first view of this underlying data is a random MNIST image with the correct digit, rotated randomly +- 45 degrees.

The second view of this underlying data is another random MNIST image (not rotated) with the correct digit, but with the addition of uniform noise from [0,1]

An example point of our data is:


	view1: an MNIST image with the label “9”


	view2: a different MNIST image with the label “9” with noise added.





[7]:






class NoisyMnist(Dataset):

    MNIST_MEAN, MNIST_STD = (0.1307, 0.3081)

    def __init__(self, train=True):
        super().__init__()
        self.mnistDataset = datasets.MNIST("./mnist", train=train, download=True)

    def __len__(self):
        return len(self.mnistDataset)

    def __getitem__(self, idx):
        randomIndex = lambda: np.random.randint(len(self.mnistDataset))
        image1, label1 = self.mnistDataset[idx]
        image2, label2 = self.mnistDataset[randomIndex()]
        while not label1 == label2:
            image2, label2 = self.mnistDataset[randomIndex()]

        image1 = torchvision.transforms.RandomRotation((-45, 45), resample=PIL.Image.BICUBIC)(image1)
        #image2 = torchvision.transforms.RandomRotation((-45, 45), resample=PIL.Image.BICUBIC)(image2)
        image1 = np.array(image1) / 255
        image2 = np.array(image2) / 255

        image2 = np.clip(image2 + np.random.uniform(0, 1, size=image2.shape), 0, 1) # add noise to the view2 image

        # standardize both images
        image1 = (image1 - self.MNIST_MEAN) / self.MNIST_STD
        image2 = (image2 - (self.MNIST_MEAN+0.447)) / self.MNIST_STD

        image1 = torch.FloatTensor(image1).unsqueeze(0) # image1 is view1
        image2 = torch.FloatTensor(image2).unsqueeze(0) # image2 is view2

        return (image1, image2, label1)







Let’s look at this datset we made. The first row is view1 and the second row is the corresponding view2.


[9]:






dataset = NoisyMnist()
print("Dataset length is", len(dataset))
dataloader = DataLoader(dataset, batch_size=8, shuffle=True, num_workers=8)
view1, view2, labels = next(iter(dataloader))

view1Row = torch.cat([*view1.squeeze()], dim=1)
view2Row = torch.cat([*view2.squeeze()], dim=1)
# make between 0 and 1 again:
view1Row = (view1Row - torch.min(view1Row)) / (torch.max(view1Row) - torch.min(view1Row))
view2Row = (view2Row - torch.min(view2Row)) / (torch.max(view2Row) - torch.min(view2Row))
plt.imshow(torch.cat([view1Row, view2Row], dim=0))













Dataset length is 60000







[9]:






<matplotlib.image.AxesImage at 0x131f2cdd8>












[image: ../../_images/tutorials_embed_SplitAE_Tutorial_7_2.svg]



Sklearn API doesn’t use Dataloaders (which hampers data augmentation :( ) so let’s get our dataset into a different format. Each view will be an array of the shape (nSamples, nFeatures). We will do the same for the test dataset.


[6]:






# since batch_size=len(dataset), we get the full dataset with one next(iter(dataset)) call
dataloader = DataLoader(dataset, batch_size=len(dataset), shuffle=True, num_workers=8)
view1, view2, labels = next(iter(dataloader))
view1 = view1.view(view1.shape[0], -1)
view2 = view2.view(view2.shape[0], -1)

testDataset = NoisyMnist(train=False)
print("Test dataset length is", len(testDataset))
testDataloader = DataLoader(testDataset, batch_size=10000, shuffle=True, num_workers=8)
testView1, testView2, testLabels = next(iter(testDataloader))
testView1 = testView1.view(testView1.shape[0], -1)
testView2 = testView2.view(testView2.shape[0], -1)













Test dataset length is 10000






SplitAE does two things. It creates a shared embedding for view1 and view2. And it allows predicting view2 from view1. The autoencoder network takes in view1 as input, squeezes it into a low-dimensional representation, and then from that low-dimensional representation (the embedding), it tries to recreate view1 and predict view2. Let’s see that:


[19]:






splitae = SplitAE(hidden_size=1024, num_hidden_layers=2, embed_size=10, training_epochs=10, batch_size=128,
                  learning_rate=0.001, print_info=False, print_graph=True)
splitae.fit([view1, view2], validation_Xs=[testView1, testView2])
# if the named parameter validationXs is passed with held-out data, then .fit will print validation error as well.













Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_11_1.png]




We can see from the graph that test error did not diverge from train error, which means we’re not overfitting, which is good! Let’s see the actual view1 recreation and the view2 prediction on test data:


[20]:






MNIST_MEAN, MNIST_STD = (0.1307, 0.3081)
testEmbed, testView1Reconstruction, testView2Prediction = splitae.transform([testView1, testView2])
numImages = 8
randIndices = np.random.choice(range(len(testDataset)), numImages, replace=False)
def plotRow(title, view):
    samples = view[randIndices].reshape(-1, 28, 28)
    row = np.concatenate([*samples], axis=1)
    row = np.clip(row * MNIST_STD + MNIST_MEAN, 0, 1) #denormalize
    plt.imshow(row)
    plt.title(title)
    plt.show()
plotRow("view 1", testView1)
plotRow("reconstructed view 1", testView1Reconstruction)
plotRow("predicted view 2", testView2Prediction)












[image: ../../_images/tutorials_embed_SplitAE_Tutorial_13_0.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_13_1.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_13_2.png]




Notice the view 2 predictions. Had our view2 images been randomly rotated, the predictions would have a hazy circle, since the best guess would be the mean of all the rotated digits. Since we don’t rotate our view2 images, we instead get something that’s only a bit hazy around the edges – corresonding to the mean of all the non-rotated digits.

Next let’s visualize our 20d test embeddings with T-SNE and see if they represent our original underlying representation – the digits from 0-9 – of which we made two views of. In the perfect scenario, each of the 10,000 vectors of our test embedding would be one of ten vectors, representing the digits from 0-9. (Our network wouldn’t do this, as it tries to reconstruct each unique view1 image exactly). In lieu of this we can hope for embedding vectors corresponding to the same digits to be
closer together.


[24]:






%config InlineBackend.figure_format = 'retina'

tsne = TSNE()
tsneEmbeddings = tsne.fit_transform(testEmbed)

def plot2DEmbeddings(embeddings, labels):
    pointColors = []
    origColors = [[55, 55, 55], [255, 34, 34], [38, 255, 38], [10, 10, 255], [255, 12, 255], [250, 200, 160], [120, 210, 180], [150, 180, 205], [210, 160, 210], [190, 190, 110]]
    origColors = (np.array(origColors)) / 255
    for l in labels.cpu().numpy():
        pointColors.append(tuple(origColors[l].tolist()))

    fig, ax = plt.subplots()
    #scatter = ax.scatter(*tsneEmbeddings.transpose(), c=pointColors, s=5)
    for i, label in enumerate(np.unique(labels)):
        idxs = np.where(testLabels == label)
        ax.scatter(embeddings[idxs][:, 0], embeddings[idxs][:, 1], c=[origColors[i]], label=i, s=5)

    legend = plt.legend(loc="lower left")
    for handle in legend.legendHandles:
        handle.set_sizes([30.0])
    plt.show()

plot2DEmbeddings(tsneEmbeddings, testLabels)












[image: ../../_images/tutorials_embed_SplitAE_Tutorial_16_0.png]




This is the image we’re trying to reproduce:

[image: image]

Lets check the variability of multiple TSNE runs:


[22]:






for i in range(10):
    tsneEmbeddings = tsne.fit_transform(testEmbed)
    plot2DEmbeddings(tsneEmbeddings, testLabels)












[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_0.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_1.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_2.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_3.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_4.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_5.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_6.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_7.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_8.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_19_9.png]




Now let’s check the variability of both training the model plus TSNE-ing the test embeddings.


[23]:






for i in range(10):

    splitae = SplitAE(hidden_size=1024, num_hidden_layers=2, embed_size=10, training_epochs=12, batch_size=128,
                      learning_rate=0.001, print_info=False, print_graph=True)
    splitae.fit([view1, view2])

    testEmbed, testView1Reconstruction, testView2Reconstruction = splitae.transform([testView1, testView2])

    tsneEmbeddings = tsne.fit_transform(testEmbed)
    plot2DEmbeddings(tsneEmbeddings, testLabels)













Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_1.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_2.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_4.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_5.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_7.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_8.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_10.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_11.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_13.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_14.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_16.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_17.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_19.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_20.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_22.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_23.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_25.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_26.png]










Parameter counts:
view1Encoder: 1,863,690
view1Decoder: 1,864,464
view2Decoder: 1,864,464











[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_28.png]









[image: ../../_images/tutorials_embed_SplitAE_Tutorial_21_29.png]




In most of the plots in the above cell we can see the distinct connected bands of the original figure, as well as the distinct black circular blob (corresponding to the digit 0, which appears easiest to learn). In some of the figures, a one or two bands are broken up. With more training of the network, though (stepping the learning rate), the bands converge less stretched (i.e. average distance between vectors of the same class is closer) blobs.





          

      

      

    

  

    
      
          
            
  

None


Predicting views using SplitAE


[15]:






import numpy as np
import torch
from mvlearn.embed import SplitAE
import matplotlib.pyplot as plt
import sklearn.cross_decomposition
plt.style.use("ggplot")
%config InlineBackend.figure_format = 'svg'








[16]:






# cca, previously validated against sklearn CCA
def cca(X, Y, regularizationλ=0):

    X = X - X.mean(axis=0)
    Y = Y - Y.mean(axis=0)
    k = min(X.shape[1], Y.shape[1])
    covXX = (X.t() @ X) / X.shape[0] + regularizationλ*torch.eye(X.shape[1], device=X.device)
    covYY = (Y.t() @ Y) / X.shape[0] + regularizationλ*torch.eye(Y.shape[1], device=X.device)
    covXY = (X.t() @ Y) / X.shape[0]

    U_x, S_x, V_x = covXX.svd()
    U_y, S_y, V_y = covYY.svd()
    covXXinvHalf = V_x @ (S_x.sqrt().reciprocal().diag()) @ U_x.t()
    covYYinvHalf = V_y @ (S_y.sqrt().reciprocal().diag()) @ U_y.t()
    T = covXXinvHalf @ covXY @ covYYinvHalf
    U, S, V = T.svd()
    A = covXXinvHalf @ U[:, :k]
    B = covYYinvHalf @ V[:, :k]
    return A.t(), B.t(), S








Predicting a held out view with CCA, nonlinear relationship between views


[17]:






# The relationship between view1 and view2 is that view2(t) = view1(t) ** 2.
# In words, View1(t) is a nonlinear function of View2(t)
view1 = np.random.randn(10000, 10)
view2 = view1 ** 2
# view2 = view1 @ np.random.randn(10, 10)

# Let's say now say we have 10,000 points with a view1 but only 5000 of those points have a view 2. So
# one obvious goal is to somehow reconstruct the missing view2 data for those points.
view1Train = view1[:5000]
view2Train = view2[:5000]
view1Test = view1[5000:]
view2Test = view2[5000:] # these are what we're trying to predict

# Let's try and predict view2Test with CCA
U, V, S = cca(torch.FloatTensor(view1Train), torch.FloatTensor(view2Train))
view1CCs = view1Train @ U.t().numpy()
view2CCs = view2Train @ V.t().numpy()
covariance = np.mean((view1CCs - view1CCs.mean(axis=0)) * (view2CCs - view2CCs.mean(axis=0)), axis=0)
stdprod = np.std(view1CCs, axis=0) * np.std(view2CCs, axis=0)
correlations = covariance / stdprod

# we can see that the canonical correlations are very low. This means that for any given sample, the
# vector of view1 canonical variables will not be close to the vector of view2 canonical variables.
# Ideally the canonical correlations would be 1, so that the for each point, each view's canonical variable
# has the same vlaue.
plt.plot(correlations)
plt.title("Canonical Correlations")
plt.show()












[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_4_0.svg]




[18]:






# This is how we predict our training data given the canonical variables
view1TrainPred = view1CCs @ np.linalg.inv(U.t().numpy())
view2TrainPred = view2CCs @ np.linalg.inv(V.t().numpy())
assert np.all(view1TrainPred - view1Train < 1e-2)
assert np.all(view2TrainPred - view2Train < 1e-2)

# This is how we predict View2 from View1 values. Notice the V.t() matrix being used for view1 values.
view1TestCCs = view1Test @ U.t().numpy()
view2TestPred = view1TestCCs @ np.linalg.inv(V.t().numpy())

# Notice that the magnitude of the errors are close to the magnitude of the view2 elements themselves!
# these are bad predictions.
predictionErrors = np.abs(view2TestPred - view2Test).ravel()
plt.hist(predictionErrors)
plt.title("Prediction Errors")
plt.show()
plt.hist(view2.ravel())
plt.title("View 2 Magnitudes")
plt.show()

print("MSE Loss is ", np.mean((view2TestPred - view2Test)**2))

# If you repeat this experiment with view2 = (some linear combination of the features of view1),
# for example view2 = view1 @ np.random.randn(10, 10)
# the prediction errors will be zero. This is where CCA exceeds, when the above is true. We will see this
# next time we run CCA.












[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_5_0.svg]








[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_5_1.svg]









MSE Loss is  5.096770717383144









Predicting a held out view with SplitAE, nonlinear relationship between views


[19]:






# Now lets try the same thing with SplitAE!
splitae = SplitAE(hidden_size=32, num_hidden_layers=1, embed_size=20, training_epochs=50, batch_size=32, learning_rate=0.01, print_info=False, print_graph=True)
splitae.fit([view1Train, view2Train], validationXs=[view1Test, view2Test])

# (I'm using the test data to see validation loss, in a real case the validation set is held out data and the test set is unknown / not used until the end)
embeddings, reconstructedView1, predictedView2 = splitae.transform([view1Test])
predictionErrors = np.abs(predictedView2 - view2Test).ravel()
plt.hist(predictionErrors)
plt.title("Prediction Errors")
plt.show()
plt.hist(view2.ravel())
plt.title("View 2 Magnitudes")
plt.show()

print("MSE Loss is ", np.mean((predictedView2 - view2Test)**2))

# The bins near 0 are a bit deceiving on the histograms, but the loss shows it all -- with splitAE we can
# predict our view2 from view1 with much higher accuracy than CCA.
# The tradeoff here was hyperparameter tuning -- I had to get the embed size right, the number of hidden layers right
# (too big, and the loss will converge to something higher), and train for the right amount of time.













Parameter counts:
view1Encoder: 1,012
view1Decoder: 1,002
view2Decoder: 1,002











[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_7_1.svg]








[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_7_2.svg]








[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_7_3.svg]









MSE Loss is  0.052350855326646545









Predicting a held out view with CCA, linear relationship between views, few data points


[20]:






# Lets say instead of 5000 input points we only have 50 train points and 50 test points. And that this time,
# we have a generally linear relationship.
view1 = np.random.randn(100, 10)
view2 = view1 @ np.random.randn(10, 10)

view1Train = view1[:50]
view2Train = view2[:50]
view1Test = view1[50:]
view2Test = view2[50:] # these are what we're trying to predict

U, V, S = cca(torch.FloatTensor(view1Train), torch.FloatTensor(view2Train))
view1TestCCs = view1Test @ U.t().numpy()
view2TestPred = view1TestCCs @ np.linalg.inv(V.t().numpy())
print("MSE Loss is ", np.mean((view2TestPred - view2Test)**2))

# CCA achieves a loss of ~0. Can splitAE achieve the same?













MSE Loss is  2.517854473585315e-11









Predicting a held out view with SplitAE, linear relationship between views, few data points


[21]:






splitae = SplitAE(hidden_size=32, num_hidden_layers=2, embed_size=20, training_epochs=500, batch_size=10, learning_rate=0.01, print_info=False, print_graph=True)
splitae.fit([view1Train, view2Train], validationXs=[view1Test, view2Test])
embeddings, reconstructedView1, predictedView2 = splitae.transform([view1Test]) # using test data

print("MSE Loss for test data ", np.mean((predictedView2 - view2Test)**2))
embeddings, reconstructedView1, predictedView2 = splitae.transform([view1Train]) # using training data
print("MSE Loss for train data ", np.mean((predictedView2 - view2Train)**2))
print("MSE Loss when predicting mean", np.mean((0 - view2Train)**2))

# Clearly we have overfit, and from the graph we can see that we have done so within the first dozen epochs.
# Our test error is almost as bad a just predicting the mean. Can further tuning the parameters s.t.
# we don't overfit allow us to match CCA performance?













Parameter counts:
view1Encoder: 2,068
view1Decoder: 2,058
view2Decoder: 2,058











[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_11_1.svg]









MSE Loss for test data  5.59877941169036
MSE Loss for train data  0.06715857622620428
MSE Loss when predicting mean 8.489032078377859







[22]:






splitae = SplitAE(hidden_size=32, num_hidden_layers=0, embed_size=20, training_epochs=500, batch_size=10, learning_rate=0.01, print_info=False, print_graph=True)
splitae.fit([view1Train, view2Train], validationXs=[view1Test, view2Test])
embeddings, reconstructedView1, predictedView2 = splitae.transform([view1Test]) # using test data
print("MSE Loss for test data ", np.mean((predictedView2 - view2Test)**2))

# Luckily, by converting our model to a linear one (i.e. numHiddenLayers=0, so no activations are performed)
# we have once again predicted the test data correctly.
# But the trade-off here is clear. CCA has performed maybe 10 matrix operations. SplitAE has performed at least
# 500*2 = 1000 equivalent matrix operations.
# Using %%timeit,
# - CCA takes ~600us to predict view2Test.
# - SplitAE takes ~4.5s (7,000x slower) to predict view2Test













Parameter counts:
view1Encoder: 220
view1Decoder: 210
view2Decoder: 210











[image: ../../_images/tutorials_embed_SplitAE_Simulated_Data_12_1.svg]









MSE Loss for test data  0.00038991122173028984












          

      

      

    

  

    
      
          
            
  

None


Angle-based Joint and Individual Variation (AJIVE) Explained

Adopted from the code at https://github.com/idc9/py_jive and their tutorial written by:

Author: Iain Carmichael

License: MIT License

–

AJIVE is a useful algorithm that decomposes multiple views of data into three main categories: - Joint Variation - Individual Variation - Noise

This notebook will prove out the implementation of AJIVE and show some examples of the algorithm’s usefulness


[2]:






import numpy as np
from mvlearn.decomposition import AJIVE, data_block_heatmaps, ajive_full_estimate_heatmaps
import matplotlib.pyplot as plt
%matplotlib inline








Data Creation

Here we create data in the same way detailed in the initial JIVE paper:

[1] Lock, Eric F., et al. “Joint and Individual Variation Explained (JIVE) for Integrated Analysis of Multiple Data Types.”        The Annals of Applied Statistics, vol. 7, no. 1, 2013, pp. 523–542., doi:10.1214/12-aoas597.






The two views are created with shared joint variation, unique individual variation, and independent noise. A representation of what the implementation of this algorithm does can be seen in the cell below.


[2]:






np.random.seed(12)

# First View
V1_joint = np.bmat([[-1 * np.ones((50, 2000))],
                       [np.ones((50, 2000))]])

V1_joint = np.bmat([np.zeros((100, 8000)), V1_joint])

V1_indiv_t = np.bmat([[np.ones((20, 5000))],
                        [-1 * np.ones((20, 5000))],
                        [np.zeros((20, 5000))],
                        [np.ones((20, 5000))],
                        [-1 * np.ones((20, 5000))]])

V1_indiv_b = np.bmat([[np.ones((25, 5000))],
                        [-1 * np.ones((50, 5000))],
                        [np.ones((25, 5000))]])

V1_indiv_tot = np.bmat([V1_indiv_t, V1_indiv_t])

V1_noise = np.random.normal(loc=0, scale=1, size=(100, 10000))


# Second View
V2_joint = np.bmat([[np.ones((50, 50))],
                      [-1*np.ones((50, 50))]])

V2_joint = 5000 * np.bmat([V2_joint, np.zeros((100, 50))])

V2_indiv = 5000 * np.bmat([[-1 * np.ones((25, 100))],
                              [np.ones((25, 100))],
                              [-1 * np.ones((25, 100))],
                              [np.ones((25, 100))]])

V2_noise = 5000 * np.random.normal(loc=0, scale=1, size=(100, 100))

# View Construction

V1 = V1_indiv_tot + V1_joint + V1_noise

V2 = V2_indiv + V2_joint + V2_noise

Views_1 = [V1, V1]
Views_2 = [V1, V2]










Scree Plots

Scree plots allow us to observe variation and determine an appropriate initial signal rank for each view.


[3]:






def scree_plot(n,V,name):
    U, S, V = np.linalg.svd(V)
    eigvals = S**2 / np.sum(S**2)
    eigval_terms = np.arange(n) + 1
    plt.plot(eigval_terms, eigvals[0:n], 'ro-', linewidth=2)
    plt.title('Scree Plot '+ name)
    plt.xlabel('Principal Components')
    plt.ylabel('Eigenvalue')
    plt.figure()

scree_plot(12,V1,'View 1')
scree_plot(12,V2,'View 2')












[image: ../../_images/tutorials_decomposition_ajive_tutorial_6_0.png]









[image: ../../_images/tutorials_decomposition_ajive_tutorial_6_1.png]









<Figure size 432x288 with 0 Axes>







Based on the scree plots, we fit AJIVE with both initial signal ranks set to 2.


[4]:






ajive1 = AJIVE(init_signal_ranks=[2,2])
ajive1.fit(Xs=[V1,V1], view_names=['x1','x2'])

ajive2 = AJIVE(init_signal_ranks=[2,2])
ajive2.fit(Xs=[V1,V2], view_names=['x','y'])








[4]:






joint rank: 1, block x indiv rank: 1, block y indiv rank: 1










Output Structure

The predict() function returns n dictionaries where n is the number of views fitted. Each dictionary has a joint, individual, and noise matrix taken from the AJIVE decomposition. The keys are ‘joint’, ‘individual’, and ‘noise’ and the values are the respective matrices.


[5]:






blocks1 = ajive1.predict()
blocks2 = ajive2.predict()










Heatmap Visualizations

Here we are using heatmaps to visualize the decomposition of our views. As we can see when we use two of the same views there is no Individualized Variation displayed. When we create two different views, the algorithm finds different decompositions where common and individual structural artifacts can be seen in their corresponding heatmaps.


Same Views


[6]:






plt.figure(figsize=[20, 5])
data_block_heatmaps(Views_1)












[image: ../../_images/tutorials_decomposition_ajive_tutorial_13_0.png]





[7]:






plt.figure(figsize=[20, 10])
plt.title('Same Views')
ajive_full_estimate_heatmaps(Views_1, blocks1, names=['x1','x2'])












[image: ../../_images/tutorials_decomposition_ajive_tutorial_14_0.png]







Different Views


[9]:






plt.figure(figsize=[20, 5])
data_block_heatmaps(Views_2)












[image: ../../_images/tutorials_decomposition_ajive_tutorial_16_0.png]





[10]:






plt.figure(figsize=[20, 10])
ajive_full_estimate_heatmaps(Views_2, blocks2, names=['x','y'])












[image: ../../_images/tutorials_decomposition_ajive_tutorial_17_0.png]












          

      

      

    

  

    
      
          
            
  

None


Multiview Independent Component Analysis (ICA) Tutorial

Adopted from the code at https://github.com/hugorichard/multiviewica and their tutorial written by:

Authors: Hugo Richard, Pierre Ablin

License: BSD 3 clause

Three multiview ICA algorithms are compared. GroupICA concatenates the individual views prior to dimensionality reduction and running ICA over the result. PermICA is more sensitive to individual discrepencies, and computes ICA on each view before aligning the reuslts using the hungarian algorithm. Lastly, MultiviewICA performs the best by optimizing the set of mixing matrices relative to the average source signal.


[2]:






import numpy as np
import matplotlib.pyplot as plt

from mvlearn.decomposition import MultiviewICA, PermICA, GroupICA








[3]:






# sigmas: data noise
# m: number of subjects
# k: number of components
# n: number of samples
sigmas = np.logspace(-2, 1, 6)
n_seeds = 3
m, k, n = 5, 3, 1000

cm = plt.cm.tab20
algos = [
    ("MultiViewICA", cm(0), MultiviewICA),
    ("PermICA", cm(2), PermICA),
    ("GroupICA", cm(6), GroupICA),
]


def amari_d(W, A):
    P = np.dot(A, W)

    def s(r):
        return np.sum(np.sum(r ** 2, axis=1) / np.max(r ** 2, axis=1) - 1)

    return (s(np.abs(P.T)) + s(np.abs(P))) / (2 * P.shape[1])


plots = []
for name, color, algo in algos:
    means = []
    lows = []
    highs = []
    for sigma in sigmas:
        dists = []
        for seed in range(n_seeds):
            rng = np.random.RandomState(seed)
            S_true = rng.laplace(size=(n, k))
            A_list = rng.randn(m, k, k)
            noises = rng.randn(m, n, k)
            Xs = np.array([S_true.dot(A) for A in A_list])
            Xs += [sigma * N.dot(A) for A, N in zip(A_list, noises)]
            ica = algo(tol=1e-4, max_iter=1000, random_state=0).fit(Xs)
            W = ica.unmixings_
            dist = np.mean([amari_d(W[i], A_list[i]) for i in range(m)])
            dists.append(dist)
        dists = np.array(dists)
        mean = np.mean(dists)
        low = np.quantile(dists, 0.1)
        high = np.quantile(dists, 0.9)
        means.append(mean)
        lows.append(low)
        highs.append(high)
    lows = np.array(lows)
    highs = np.array(highs)
    means = np.array(means)
    plots.append((highs, lows, means))








[4]:






fig = plt.figure(figsize=(5, 3))
for i, (name, color, algo) in enumerate(algos):
    highs, lows, means = plots[i]
    plt.fill_between(
        sigmas, lows, highs, color=color, alpha=0.3,
    )
    plt.loglog(
        sigmas, means, label=name, color=color,
    )
plt.legend()
x_ = plt.xlabel(r"Data noise")
y_ = plt.ylabel(r"Amari distance")
fig.tight_layout()
plt.show()












[image: ../../_images/tutorials_decomposition_mv_ica_tutorial_3_0.png]




MultiviewICA has the best performance (lowest Amari distance).





          

      

      

    

  

    
      
          
            
  

None


Group ICA: a tutorial

Author: Pierre Ablin

Group ICA extends the celebrated Independent Component Analysis to multiple datasets.

Single view ICA decomposes a dataset \(X\) as \(X = S \times A^{\top}\), where \(S\) are the independent sources (meaning that the columns of \(S\) are independent), and \(A\) is the mixing matrix.

In group ICA, we have several views \(Xs = [X_1, \dots, X_n]\). Each view is obtained as


\[Xi \simeq S \times Ai.T\]

so the views share the same sources \(S\), but have different mixing matrices \(A_i\). It is a powerful tool for group inference, as it allows to extract signals that are comon across views.


[2]:






import numpy as np
import matplotlib.pyplot as plt
from mvlearn.decomposition import GroupICA








[3]:






def plot_sources(S):
    n_samples, n_sources = S.shape
    fig, axes = plt.subplots(n_sources, 1, figsize=(6, 4), sharex=True)
    for ax, sig in zip(axes, S.T):
        ax.plot(sig)







First, let’s define some sources:


[4]:






np.random.seed(0)
n_samples = 2000
time = np.linspace(0, 8, n_samples)

s1 = np.sin(2 * time) * np.sin(40 * time)
s2 = np.sin(3 * time) ** 5
s3 = np.random.laplace(size=s1.shape)

S = np.c_[s1, s2, s3]

plot_sources(S)












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_4_0.png]




Next, generate some views, which are noisy observations of linear transforms of these sources:


[5]:






n_views = 10
mixings = [np.random.randn(3, 3) for _ in range(n_views)]
Xs = [np.dot(S, A.T) + 0.3 * np.random.randn(n_samples, 3) for A in mixings]







We can visualize one dataset: it looks quite messy.


[6]:






plot_sources(Xs[0])












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_8_0.png]




Next, we can apply group ICA. The option multiview_output=False means that we want to recover the estimated sources when we do .transform.


[7]:






groupica = GroupICA(multiview_output=False).fit(Xs)







Let’s look at what the algorithm estimates:


[8]:






estimated_sources = groupica.transform(Xs)
plot_sources(estimated_sources)












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_12_0.png]




Looks pretty good ! We can also wheck that it has correctly predicted each mixing matrix. The estimated mixing matrices are stored in the .individual_mixing_ attribute.


[9]:






estimated_mixings = groupica.individual_mixing_







If \(\tilde{A}\) is the estimated mixing matrix and \(A\) is the true mixing matrix, we can look at \(\tilde{A}^{-1}A\). It should be close to a scale and permuation matrix: in this case, the sources are correctly estimated, up to scale and permutation.


[10]:






plt.matshow(np.dot(np.linalg.pinv(estimated_mixings[0]), mixings[0]))








[10]:






<matplotlib.image.AxesImage at 0x7f3f7e3d0290>












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_16_1.png]




A great advantage of groupICA is that it leverages the multiple views to reduce noise. For instance, if only had two views, we would have obtained:


[11]:






estimated_sources = groupica.fit_transform(Xs[:2])
plot_sources(estimated_sources)












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_18_0.png]




Another important property of group ICA is that it can recover signals that are common to all datasets, and separate these signals from the rest. Imagine that we only have one common source across datasets:


[12]:






common_source = S[:, 0]
mixings = np.random.randn(n_views, 3)
Xs = [a * common_source[:, None] + 0.3 * np.random.randn(n_samples, 3) for a in mixings]








[13]:






estimated_sources = groupica.fit_transform(Xs)
plot_sources(estimated_sources)












[image: ../../_images/tutorials_decomposition_group_ica_tutorial_21_0.png]




It recovers the common source on one channel, and the other estimated sources are noise.





          

      

      

    

  

    
      
          
            
  

None


[2]:






import numpy as np







Author: Pierre Ablin


Integrating mvlearn with scikit-learn

mvlearn mimics most of scikit-learn API, and integrates seamlessly with it. In scikit-learn, a dataset is represented as a 2d array X of shape (n_samples, n_features). In mvlearn, datasets Xs are lists of views, which are themselves 2d arrays of shape (n_samples, n_features_i). The number of features does not have to be constant:


[3]:






n_samples = 100
n_features1 = 20
n_features2 = 30

X1 = np.random.randn(n_samples, n_features1)
X2 = np.random.randn(n_samples, n_features2)
Xs = [X1, X2]







Here, Xs is a multiview dataset, containing two views. mvlearn works with these objects.




ViewTransformer

mvlearn.preprocessing.ViewTransformer is a handy tool to apply the same sklearn transformer to each view of the multiview dataset. For instance, it is simple to apply PCA to each view. In the following, we reduce the dimension of each view to 3:


[4]:






from mvlearn.preprocessing import ViewTransformer
from sklearn.decomposition import PCA

pca = PCA(n_components=3)
mvpca = ViewTransformer(pca)
Xs_transformed = mvpca.fit_transform(Xs)
print(len(Xs_transformed))
print([X.shape for X in Xs_transformed])













2
[(100, 3), (100, 3)]






The PCA is applied to each view with the mvpca transformer, and the output of PCA, Xs_transformed, is a multiview dataset, where each view now has 3features.

Importantly, it is possible to apply a different transform to each view, by passing a list to ViewTransformer. For instance, if we want to keep 5 components in the second dataset, we can do:


[5]:






pca2 = PCA(n_components=5)
mvpca = ViewTransformer([pca, pca2])
Xs_transformed = mvpca.fit_transform(Xs)
print(len(Xs_transformed))
print([X.shape for X in Xs_transformed])













2
[(100, 3), (100, 5)]









Mergers

At the end of a multiview machine learning pipeline, it is sometimes needed to transform the multiview dataset in a single view dataset. All sklearn methods can then be used on this single view dataset. Mergers make this task simple.

A simple way to transform a multiview dataset in a single view dataset is simply by stacking each features. The class mvlearn.compose.ConcatMerger implements this:


[6]:






from mvlearn.compose import ConcatMerger

merge = ConcatMerger()

X_transformed = merge.fit_transform(Xs)
print(X_transformed.shape)













(100, 50)






This allows for simple integration in scikit-learn pipelines.




Pipeline example: group-ICA

As a simple illustration, we now show how easy it is to code group independent component analysis (groupICA) from scratch using mvlearn.

We use the group ICA of Calhoun et al. “A method for making group inferences from functional MRI data using independent component analysis.”, Human brain mapping 14.3 (2001): 140-151. as reference.

GroupICA takes a multiview dataset, and tries to extract from it some shared independent sources. In its usual formulation, it consists of three simple steps:


	Apply an individual PCA to each view


	Concatenate the features of each view


	Apply usual ICA on the concatenated features




This is easily implemented using mvlearn and scikit-learn pipelines:


[7]:






from sklearn.decomposition import FastICA
from sklearn.pipeline import Pipeline

n_components = 2
individual_pca = ViewTransformer(PCA(n_components=n_components))
merge = ConcatMerger()
ica = FastICA(n_components=n_components)

groupica = Pipeline([('individual pca', individual_pca),
                     ('concatenate', merge),
                     ('ica', ica)])

X_transformed = groupica.fit_transform(Xs)
print(X_transformed.shape)













(100, 2)






Here, Xs contains Gaussian noise, so nothing of value is extracted. However, if each view consists of a linear transform of some independent sources, it works as intended:


[8]:






import matplotlib.pyplot as plt
time = np.linspace(0, 1, 1000)
source1 = np.cos(20 * time)
source2 = np.sin(50 * time)
S = np.c_[source1, source2]
A1 = np.random.randn(3, 2)
A2 = np.random.randn(4, 2)
X1 = np.dot(S, A1.T) + .1 * np.random.randn(1000, 3)
X2 = np.dot(S, A2.T) + .1 * np.random.randn(1000, 4)
Xs = [X1, X2]
plt.figure()
plt.plot(time, source1, time, source2)
plt.title('Sources')

plt.figure()
for x in X1.T:
    plt.plot(time, x)
plt.title('signals');












[image: ../../_images/tutorials_pipeline_Scikit-learn_integration_14_0.png]









[image: ../../_images/tutorials_pipeline_Scikit-learn_integration_14_1.png]





[9]:






X_transformed = groupica.fit_transform(Xs)








[10]:






for x in X_transformed.T:
    plt.plot(time, x)
plt.title('recovered signals');












[image: ../../_images/tutorials_pipeline_Scikit-learn_integration_16_0.png]








          

      

      

    

  

    
      
          
            
  

None


Using quick_visualize() to quickly understand multi-view data


Easily view and understand underlying clusters in multi-view data

As a simple example, say we had high-dimensional multi-view data that we wanted to quickly visualize before we begin our analysis. With quick_visualize, we can easily do this. As an example, we will visualize the UCI Multiple Features dataset.


[1]:






# Import the function
from mvlearn.plotting import quick_visualize
from mvlearn.datasets import load_UCImultifeature

import matplotlib.pyplot as plt
%matplotlib inline








[2]:






# Load 4-class data
Xs, y = load_UCImultifeature(select_labeled=[0,1,2,3])








[3]:






# Quickly visualize the data
quick_visualize(Xs, figsize=(5,5))












[image: ../../_images/tutorials_plotting_quick_visualize_tutorial_4_0.png]





If we have class labels that we want to visualize too, we can easily add those


[4]:






quick_visualize(Xs, labels=y, title='Labeled Classes', figsize=(5,5))












[image: ../../_images/tutorials_plotting_quick_visualize_tutorial_6_0.png]












          

      

      

    

  

    
      
          
            
  

None


Plotting Across 2 Views

In many cases with multi-view data, especially after use of an embedding algorithm, one is interested in visualizing two views across dimensions. One use is assessing correlation between corresponding dimensions of views. Here, we use this function to display the relationship between two views simulated from transformations of multi-variant gaussians.


[1]:






from mvlearn.datasets import GaussianMixture
from mvlearn.plotting import crossviews_plot
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline








[2]:






n_samples = 100
centers = [[0,1], [0,-1]]
covariances = [np.eye(2), np.eye(2)]
GM = GaussianMixture(n_samples, centers, covariances, shuffle=True)
GM = GM.sample_views(transform='poly', n_noise=2)







Below, we see that the first two dimensions are related by a degree 2 polynomial while the latter two dimensions are uncorrelated.


[3]:






crossviews_plot(GM.Xs_, labels=GM.y_, title='View 1 vs. View 2 (Polynomial Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_plotting_crossviews_plot_4_0.svg]







          

      

      

    

  

    
      
          
            
  

None


Loading and Viewing the UCI Multiple Features Dataset


[1]:






from mvlearn.datasets import load_UCImultifeature








[2]:






# load the quick_visualize function for quick visualization in 2D
from mvlearn.plotting import quick_visualize
%matplotlib inline








Load the data and labels

We can either load the entire dataset (all 10 digits) or select certain digits. Then, visualize in 2D.


[3]:






# Load entire dataset
full_data, full_labels = load_UCImultifeature()

print("Full Dataset\n")
print("Views = " + str(len(full_data)))
print("First view shape = " + str(full_data[0].shape))
print("Labels shape = " + str(full_labels.shape))

quick_visualize(full_data, labels=full_labels, title="10-class data")













Full Dataset

Views = 6
First view shape = (2000, 76)
Labels shape = (2000,)











[image: ../../_images/tutorials_datasets_load_UCImultifeature_4_1.png]





Load only 2 classes of the data

Also, shuffle the data and set the seed for reproducibility. Then, visualize in 2D.


[4]:






# Load only the examples labeled 0 or 1, and shuffle them,
# but set the random_state for reproducibility
partial_data, partial_labels = load_UCImultifeature(select_labeled=[0,1], shuffle=True, random_state=42)

print("\n\nPartial Dataset (only 0's and 1's)\n")
print("Views = " + str(len(partial_data)))
print("First view shape = " + str(partial_data[0].shape))
print("Labels shape = " + str(partial_labels.shape))

quick_visualize(partial_data, labels=partial_labels, title="2-class data")















Partial Dataset (only 0's and 1's)

Views = 6
First view shape = (400, 76)
Labels shape = (400,)











[image: ../../_images/tutorials_datasets_load_UCImultifeature_6_1.png]












          

      

      

    

  

    
      
          
            
  

None


Multiview Data from Gaussian Mixtures

In this example we show how to simulate multiview data from Gaussian mixtures and plot them using a crossviews plot.


[1]:






from mvlearn.datasets import GaussianMixture
from mvlearn.plotting import crossviews_plot
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

%load_ext autoreload
%autoreload 2







Latent variables are sampled from two multivariate Gaussians with equal prior probability. Then a polynomial transformation is applied and noise is added independently to both the transformed and untransformed latents.


[2]:






n_samples = 100
centers = [[0,1], [0,-1]]
covariances = [np.eye(2), np.eye(2)]
GM = GaussianMixture(n_samples, centers, covariances, random_state=42,
                     shuffle=True, shuffle_random_state=42)
GM = GM.sample_views(transform='poly', n_noise=2)

latent,y = GM.get_Xy(latents=True)
Xs,_ = GM.get_Xy(latents=False)







The latent data is plotted against itself to reveal the underlying distribtution.


[3]:






crossviews_plot([latent, latent], labels=y, title='Latent Variable', equal_axes=True)












[image: ../../_images/tutorials_datasets_GaussianMixtures_5_0.svg]



The noisy latent variable (view 1) is plotted against the transformed latent variable (view 2), an example of a dataset with two views.


[4]:






crossviews_plot(Xs, labels=y, title='View 1 vs. View 2 (Polynomial Transform + noise)', equal_axes=True)












[image: ../../_images/tutorials_datasets_GaussianMixtures_7_0.svg]







          

      

      

    

  

    
      
          
            
  

None


Multi-view Vs Single-view Visualization and Clustering

Here, we directly compare multi-view methods available within mvlearn to analagous single-view methods. Using the UCI Multiple Features Dataset, we first examine the dataset by viewing it after using dimensionality reduction techniques, then we perform unsupervised clustering and compare the results to the analagous single-view methods.


[1]:






from mvlearn.datasets import load_UCImultifeature
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline







Load 6-view, 4-class data from the Multiple Features Dataset. The full 6 views with all features will be used for clustering.


[2]:






# Load 4-class, multi-view data
Xs, y = load_UCImultifeature(select_labeled=[0,1,2,3])
#     Six views of handwritten digit images
#     1. 76 Fourier coefficients of the character shapes
#     2. 216 profile correlations
#     3. 64 Karhunen-Love coefficients
#     4. 240 pixel averages of the images from 2x3 windows
#     5. 47 Zernike moments
#     6. 6 morphological features
view_names = ['Fourier\nCoefficients', 'Profile\nCorrelations', 'Karhunen-\nLoeve',
              'Pixel\nAverages', 'Zernike\nMoments', 'Morphological\nFeatures']

order = np.argsort(y)
sub_samp = np.arange(0, Xs[0].shape[0], step=3)
set_aspect = 'equal'  # 'equal' or 'auto'
set_cmap = 'Spectral'

#row_orders = np.argsort(y)
for i, view in enumerate(Xs):
    sorted_view = view[order,:].copy()
    sorted_view = sorted_view[sub_samp,:]
    if set_aspect == 'auto':
        plt.figure(figsize=(1.5,4.5))
    else:
        plt.figure()

    # Scale matrix to [0, 1]
    minim = np.min(sorted_view)
    maxim = np.max(sorted_view)
    sorted_view = (sorted_view - minim) / (maxim - minim)

    plt.imshow(sorted_view, cmap=set_cmap, aspect=set_aspect)
    #plt.title('View {}'.format(i+1))
    plt.title(view_names[i], fontsize=14)
    plt.yticks([], "")
    max_dim = view.shape[1]
    plt.xticks([max_dim-1], [str(max_dim)])
    if i == 0:
        plt.ylabel('Samples')
    if i == 5:
        plt.colorbar()
    plt.xlabel('Features')
    plt.show()













[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_1.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_2.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_3.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_4.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_4_5.png]




Define a function to rearrange the predicted labels so that the predicted class ‘0’ corresponds better to the true class ‘0’. This is only used so that the colors generated by the labels in the prediction plots can be more easily compared to the true labels.


[3]:






from sklearn.metrics import confusion_matrix

def rearrange_labels(y_true, y_pred):
    conf_mat = confusion_matrix(y_true, y_pred)
    maxes = np.argmax(conf_mat, axis=0)
    y_pred_new = np.zeros_like(y_pred)
    for i, new in enumerate(maxes):
        y_pred_new[y_pred==i] = new
    return y_pred_new








Comparing Dimensionality Reduction Techniques

As one might do with a new dataset, we first visualize the data in 2 dimensions. For multi-view data, rather than using PCA, we use Multi-view Multi-dimensional Scaling (MVMDS) available in the package to capture the common principal components across views. This is performed automatically within the quick_visualize function. From the unlabeled plot, it is clear that there may be 4 underlying clusters, so unsupervised clustering with 4 clusters may be a natural next step in analyzing this data.


[4]:






from mvlearn.plotting import quick_visualize

# Use all 6 views available to reduce the dimensionality, since MVMDS is not limited
sca_kwargs = {'alpha' : 0.7, 's' : 10}

quick_visualize(Xs, title="Unlabeled", ax_ticks=False,
                ax_labels=False, scatter_kwargs=sca_kwargs)
quick_visualize(Xs, labels=y, title="True Labels", ax_ticks=False,
                ax_labels=False, scatter_kwargs=sca_kwargs)












[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_9_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_9_1.png]




As a comparison, we concatenate the views and use PCA to reduce the dimensionality. From the unlabeled plot, it is much less clear how many underlying classes there are, so PCA was not as useful for visualizing the data if our goal was to determine underlying clusters.


[5]:






from sklearn.decomposition import PCA

# Concatenate views to get naive single view
X_viewing = np.hstack([Xs[i] for i in range(len(Xs))])

# Use PCA for dimensionality reduction on the naive single view
pca = PCA(n_components=2)
pca_X = pca.fit_transform(X_viewing)

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("Unlabeled")
plt.show()

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], c=y, **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("True Labels")
plt.show()












[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_11_0.png]









[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_11_1.png]







Comparing Clustering Techniques using the Full Feature Space

Now, assuming we are trying to group the samples into 4 clusters (as was much more obvious after using mvlearn’s dimensionality reduction viewing method), we compare multi-view clustering techniques to single-view counterparts. Specifically, we compare 6-view spectral clustering in mvlearn with single view spectral clustering from scikit-learn. For multi-view clustering, all 6 full views of data (not the dimensionality-reduced data). For single-view comparison, we concatenate these 6 full
views into a single large matrix, the same as what we did before for PCA.

Since we have the true class labels, we assess the clustering accuracy with a homogeneity score.


[6]:






from mvlearn.cluster import MultiviewSpectralClustering

mv_clust = MultiviewSpectralClustering(n_clusters=4, affinity='nearest_neighbors')
mvlearn_cluster_labels = mv_clust.fit_predict(Xs)

# Test the accuracy of the clustering
from sklearn.metrics import homogeneity_score
mv_score = homogeneity_score(y, mvlearn_cluster_labels)
print('Multi-view homogeneity score: {0:.3f}'.format(mv_score))

# Use function defined at beginning of notebook to rearrange the labels
# for easier visual comparison to true labeled plot
mvlearn_cluster_labels = rearrange_labels(y, mvlearn_cluster_labels)

# Visualize the clusters in the 2-dimensional space
quick_visualize(Xs, labels=mvlearn_cluster_labels, title="Predicted Clusters",
                ax_ticks=False, ax_labels=False, scatter_kwargs=sca_kwargs)













Multi-view homogeneity score: 0.962











[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_14_1.png]




To compare to single-view methods, we concatenate the 6 views we used for co-clustering into one data matrix, and then perform spectral clustering using the scikit-learn library. From the figure and cluster scores that are produced, we can see that single-view spectral clustering is unable to perform as well as the multi-view version.


[7]:






from sklearn.cluster import SpectralClustering

# Concatenate views and cluster
X_clustering = X_viewing
clust = SpectralClustering(n_clusters=4, affinity='nearest_neighbors')
sklearn_cluster_labels = clust.fit_predict(X_clustering)

# Test the accuracy of the clustering
sk_score = homogeneity_score(y, sklearn_cluster_labels)
print('Single-view homogeneity score: {0:.3f}'.format(sk_score))

# Rearrange for easier visual comparison to true label plot
sklearn_cluster_labels = rearrange_labels(y, sklearn_cluster_labels)

# Use PCA for dimensionality reduction on the naive single view
pca = PCA(n_components=2)
pca_X = pca.fit_transform(X_viewing)

plt.figure(figsize=(5, 5))
plt.scatter(pca_X[:,0], pca_X[:,1], c=sklearn_cluster_labels, **sca_kwargs)
plt.xticks([], [])
plt.yticks([], [])
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.title("Predicted Clusters")
plt.show()













Single-view homogeneity score: 0.703











[image: ../../_images/tutorials_cluster_multiview_vs_singleview_clustering_16_1.png]










          

      

      

    

  

    
      
          
            
  


Reference

The package is split up into submodules.



	Clustering
	Multiview Spectral Clustering

	Co-Regularized Multiview Spectral Clustering

	Multiview K Means

	Multiview Spherical K Means





	Semi-Supervised
	Cotraining Classifier

	Cotraining Regressor





	Embedding
	Generalized Canonical Correlation Analysis

	Kernel Canonical Correlation Analysis

	Deep Canonical Correlation Analysis

	Omnibus Embedding

	Multiview Multidimensional Scaling

	Split Autoencoder

	DCCA Utilities

	Dimension Selection





	Decomposition
	Multiview ICA

	Permutation ICA

	Group ICA

	Group PCA

	Angle-Based Joint and Individual Variation Explained (AJIVE)





	View Construction
	Random Gaussian Projection

	Random Subspace Method





	Model Selection
	Cross Validation





	Compose
	AverageMerger

	ConcatMerger

	SimpleSplitter





	Preprocessing
	ViewTransformer





	Multiview Datasets
	UCI multiple feature dataset (located here)

	Data Simulator





	Plotting
	Quick Visualize

	Crossviews Plot





	Utility Functions
	IO













          

      

      

    

  

    
      
          
            
  


Clustering


Multiview Spectral Clustering




Co-Regularized Multiview Spectral Clustering




Multiview K Means




Multiview Spherical K Means







          

      

      

    

  

    
      
          
            
  


Semi-Supervised


Cotraining Classifier




Cotraining Regressor







          

      

      

    

  

    
      
          
            
  


Embedding


Generalized Canonical Correlation Analysis




Kernel Canonical Correlation Analysis




Deep Canonical Correlation Analysis




Omnibus Embedding




Multiview Multidimensional Scaling




Split Autoencoder




DCCA Utilities




Dimension Selection







          

      

      

    

  

    
      
          
            
  


Decomposition


Multiview ICA




Permutation ICA




Group ICA




Group PCA




Angle-Based Joint and Individual Variation Explained (AJIVE)


AJIVE




AJIVE Plotting Functions









          

      

      

    

  

    
      
          
            
  


View Construction


Random Gaussian Projection

Read more about sklearn's implementation here [https://scikit-learn.org/stable/modules/generated/sklearn.random_projection.GaussianRandomProjection.html].




Random Subspace Method







          

      

      

    

  

    
      
          
            
  


Model Selection


Cross Validation







          

      

      

    

  

    
      
          
            
  


Compose


AverageMerger




ConcatMerger




SimpleSplitter







          

      

      

    

  

    
      
          
            
  


Preprocessing


ViewTransformer







          

      

      

    

  

    
      
          
            
  


Multiview Datasets


UCI multiple feature dataset (located here [https://archive.ics.uci.edu/ml/datasets/Multiple+Features])




Data Simulator







          

      

      

    

  

    
      
          
            
  


Plotting


Quick Visualize




Crossviews Plot







          

      

      

    

  

    
      
          
            
  


Utility Functions


IO







          

      

      

    

  

    
      
          
            
  


Contributing to mvlearn

(adopted from scikit-learn)


Submitting a bug report or a feature request

We use GitHub issues to track all bugs and feature requests; feel free
to open an issue if you have found a bug or wish to see a feature
implemented.

In case you experience issues using this package, do not hesitate to
submit a ticket to the
Bug Tracker [https://github.com/mvlearn/mvlearn/issues]. You
are also welcome to post feature requests or pull requests.

It is recommended to check that your issue complies with the following
rules before submitting:


	Verify that your issue is not being currently addressed by other
issues [https://github.com/mvlearn/mvlearn/issues?q=] or
pull requests [https://github.com/mvlearn/mvlearn/pulls?q=].


	If you are submitting a bug report, we strongly encourage you to
follow the guidelines in How to make a good bug report.


	Always make sure your code follows the general Guidelines
and adheres to the API of mvlearn Objects.





How to make a good bug report

When you submit an issue to
Github [https://github.com/mvlearn/mvlearn/issues], please
do your best to follow these guidelines! This will make it a lot easier
to provide you with good feedback:


	The ideal bug report contains a short reproducible code snippet,
this way anyone can try to reproduce the bug easily (see
this [https://stackoverflow.com/help/mcve] for more details).
If your snippet is longer than around 50 lines, please link to a
gist [https://gist.github.com] or a github repo.


	If not feasible to include a reproducible snippet, please be specific
about what estimators and/or functions are involved and the shape
of the data.


	If an exception is raised, please provide the full traceback.


	Please include your operating system type and version number, as
well as your Python and mvlearn versions. This information can
be found by running the following code snippet in Python.

import platform; print(platform.platform());
import sys; print("Python", sys.version);
import mvlearn; print("mvlearn", mvlearn.version)







	Please ensure all code snippets and error messages are formatted in
appropriate code blocks. See
Creating and highlighting code blocks [https://help.github.com/articles/creating-and-highlighting-code-blocks]
for more details.









Contributing Code

The preferred workflow for contributing to mvlearn is to fork the main
repository on GitHub, clone, and develop on a branch. Steps:


	Fork the
project repository [https://github.com/mvlearn/mvlearn]
by clicking on the ‘Fork’ button near the top right of the page. This
creates a copy of the code under your GitHub user account. For more
details on how to fork a repository see
this guide [https://help.github.com/articles/fork-a-repo/].


	Clone your fork of the mvlearn repo from your GitHub account to
your local disk:

$ git clone git@github.com:YourLogin/mvlearn.git
$ cd mvlearn







	Create a feature branch to hold your development changes:

$ git checkout -b my-feature





Always use a feature branch. It’s good practice to never work on
the master branch!



	Develop the feature on your feature branch. Add changed files using
git add and then git commit files:

$ git add modified_files
$ git commit





to record your changes in Git, then push the changes to your GitHub
account with:

$ git push -u origin my-feature










Pull Request Checklist

We recommended that your contribution complies with the following rules
before you submit a pull request:


	Follow the coding-guidelines.


	Give your pull request a helpful title that summarises what your
contribution does. In some cases Fix <ISSUE TITLE> is enough.
Fix #<ISSUE NUMBER> is not enough.


	All public methods should have informative docstrings with sample
usage presented as doctests when appropriate.


	At least one paragraph of narrative documentation with links to
references in the literature (with PDF links when possible) and the
example.


	All functions and classes must have unit tests. These should include,
at the very least, type checking and ensuring correct
computation/outputs.


	Ensure all tests are passing locally using pytest. Install the
necessary packages by:

$ pip install pytest pytest-cov





then run

$ pytest





or you can run pytest on a single test file by

$ pytest path/to/test.py







	Run an autoformatter to conform to PEP 8 style guidelines. We use
black and would like for you to format all files using black.
You can run the following lines to format your files.

$ pip install black
$ black path/to/module.py














Guidelines


Coding Guidelines

Uniformly formatted code makes it easier to share code ownership.
mvlearn package closely follows the official Python guidelines
detailed in PEP8 [https://www.python.org/dev/peps/pep-0008/]
that detail how code should be formatted and indented. Please read it
and follow it.




Docstring Guidelines

Properly formatted docstrings is required for documentation generation
by Sphinx. The pygraphstats package closely follows the numpydoc
guidelines. Please read and follow the
numpydoc [https://numpydoc.readthedocs.io/en/latest/format.html#overview]
guidelines. Refer to the
example.py [https://numpydoc.readthedocs.io/en/latest/example.html#example]
provided by numpydoc.






API of mvlearn Objects


Estimators

The main mvlearn object is the estimator and its documentation draws
mainly from the formatting of sklearn’s estimator object. An estimator
is an object that fits a set of training data and generates some new
view of the data. Each module in mvlearn contains a main base class
(found in module_name.base) which all estimators in that module
should implement. Each of these base classes implements
sklearn.base.BaseEstimator. If you are contributing a new estimator,
be sure that it properly implements the base class
of the module it is contained within.

When contributing, borrow from sklearn requirements as
much as possible and utilize their checks to automatically check the
suitability of inputted data, or use the checks available in
mvlearn.utils such as check_Xs.


Instantiation

An estimator object’s __init__ method may accept constants that
determine the behavior of the object’s methods. These constants should
not be the data nor should they be data-dependent as those are left to
the fit method. All instantiation arguments are keyworded and have
default values. Thus, the object keeps these values across different
method calls. Every keyword argument accepted by __init__ should
correspond to an instance attribute and there should be no input
validation logic on instantiation, as that is left to fit. A correct
implementation of __init__ looks like

def __init__(self, param1=1, param2=2):
    self.param1 = param1
    self.param2 = param2








Fitting

All estimators should implement the fit(Xs, y=None) method to
make some estimation, which is called with:

estimator.fit(Xs, y)





or

estimator.fit(Xs)





The former case corresponds to the supervised case and the latter to the
unsupervised case. In unsupervised cases, y takes on a default value of
None and is ignored. Xs corresponds to a list of data matrices and y
to a list of sample labels. The samples across views in Xs and y are
matched. Note that data matrices in Xs must have the same number of
samples (rows) but the number of features (columns) may differ.







	Parameters

	Format





	Xs

	
	list of array-likes:

	
	Xs shape: (n_views,)


	Xs[i] shape: (n_samples, n_features_i)











	y

	array, shape (n_samples,)



	kwargs

	optional data-dependent parameters.






The fit method should return the object (self) so that simple
one line processes can be written.

All attributes calculated in the fit method should be saved with a
trailing underscore to distinguish them from the constants passes to
__init__. They are overwritten every time fit is called.






Additional Functionality


Transformers

A transformer object modifies the data it is given and by default outputs
multiview data, a transformation of each input view. The object also has a
multiview_output parameter in the constructor that may be set to False
so as to return a single view, joint transformation instead. An estimator may
also be a transformer that learns the transformation parameters. The transformer
object implements the transform method, i.e.

Xs_transformed = transformer.transform(Xs)





which follows a call to fit. One may alternatively perform both in the
single call

Xs_transformed = transformer.fit_transform(Xs, y)





It may be more efficient in some cases to compute the latter example
rather than call fit and transform separately.




Predictors

Similarly, a predictor object makes predictions based on the
data it is given and outputs a single array of sample-specific predictions
based on all views. An estimator may also be a predictor that learns
the prediction parameters. The predictor object implements
the predict method, i.e.

y_predicted = predictor.predict(Xs)





which follows a call to fit. One may alternatively perform both in the
single call

y_predicted = predictor.fit_predict(Xs, y)





It may be more efficient in some cases to compute the latter example
rather than call fit and predict separately.




Mergers

In some cases, it is helpful to extract a single view representation of
multiple views, as when one is integrating mvlearn estimators with an
sklearn pipeline. A merger object implements a transform method
which takes in multiview data and returns a single view representation, i.e.

X_merged = merger.transform(Xs)





which follows a call to fit and as above, one can perform both functions
in the single, potentially more efficient call

X_merged = merger.fit_transform(Xs)















          

      

      

    

  

    
      
          
            
  


Changelog

Change tags (adopted from sklearn [https://scikit-learn.org/stable/whats_new/v0.23.html]):


	Major Feature  : something big that you couldn’t do before.


	Feature  : something that you couldn’t do before.


	Efficiency  : an existing feature now may not require as much computation or memory.


	Enhancement  : a miscellaneous minor improvement.


	Fix  : something that previously didn’t work as documentated – or according to reasonable expectations – should now work.


	API Change  : you will need to change your code to have the same effect in the future; or a feature will be removed in the future.





Version 0.4.0

In development.

Updates in this release:


mvlearn.compose [https://github.com/mvlearn/mvlearn/tree/master/mvlearn/compose]


	|Major Feature| Adds an mvlearn.compose module with Merger and Splitter objects to create single views from multiviews and vice versa: ConcatMerger, AverageMerger, and SimpleSplitter. #228 [https://github.com/mvlearn/mvlearn/pull/228], #234 [https://github.com/mvlearn/mvlearn/pull/234] by Pierre Ablin [https://pierreablin.com/].







mvlearn.decomposition [https://github.com/mvlearn/mvlearn/tree/master/mvlearn/decomposition]


	Feature  Adds GroupICA and GroupPCA. #225 [https://github.com/mvlearn/mvlearn/pull/225] by Pierre Ablin [https://pierreablin.com/] and Hugo Richard [https://github.com/hugorichard].







mvlearn.model_selection [https://github.com/mvlearn/mvlearn/tree/master/mvlearn/model_selection]


	|Major Feature| Adds an model_selection module with multiview cross validation. #234 [https://github.com/mvlearn/mvlearn/pull/234] by Pierre Ablin [https://pierreablin.com/].







mvlearn.preprocessing [https://github.com/mvlearn/mvlearn/tree/master/mvlearn/preprocessing]


	|Major Feature| Adds an mvlearn.preprocessing module with ViewTransformer to apply a single view function to each view separately. #229 [https://github.com/mvlearn/mvlearn/pull/229] by Pierre Ablin [https://pierreablin.com/].


	Enhancement  Adds a parameter to utils.check_Xs so that the function also returns the dimensions (n_views, n_samples, n_features) of the input dataset. #235 [https://github.com/mvlearn/mvlearn/pull/235] by Pierre Ablin [https://pierreablin.com/].









Version 0.3.0

Updates in this release:


	cotraining module changed to semi_supervised.


	factorization module changed to decomposition.


	A new class within the semi_supervised module, CTRegressor, and regression tool for 2-view semi-supervised learning, following the cotraining framework.


	Three multiview ICA methods added: MultiviewICA, GroupICA, PermICA with python-picard dependency.


	Added parallelizability to GCCA using joblib and added partial_fit function to handle streaming or large data.


	Adds a function (get_stats()) to perform statistical tests within the embed.KCCA class so that canonical correlations and canonical variates can be robustly. assessed for significance. See the documentation in Reference for more details.


	Adds ability to select which views to return from the UCI multiple features dataset loader, datasets.UCI_multifeature.


	API enhancements including base classes for each module and algorithm type, allowing for greater flexibility to extend mvlearn.


	Internals of SplitAE changed to snake case to fit with the rest of the package.


	Fixes a bug which prevented the visualize.crossviews_plot from plotting when each view only has a single feature.


	Changes to the mvlearn.datasets.gaussian_mixture.GaussianMixture parameters to better mimic sklearn's datasets.


	Fixes a bug with printing error messages in a few classes.







Patch 0.2.1

Fixed missing __init__.py file in the ajive_utils submodule.




Version 0.2.0

Updates in this release:


	MVMDS can now also accept distance matrices as input, rather than only views of data with samples and features


	A new clustering algorithm, CoRegMultiviewSpectralClustering - co-regularized multi-view spectral clustering functionality


	Some attribute names slightly changed for more intuitive use in DCCA, KCCA, MVMDS, CTClassifier


	Option to use an Incomplete Cholesky Decomposition method for KCCA to reduce up computation times


	A new module, factorization, containing the AJIVE algorithm - angle-based joint and individual variance explained


	Fixed issue where signal dimensions of noise were dependent in the GaussianMixtures class


	Added a dependecy to joblib to enable parallel clustering implementation


	Removed the requirements for torchvision and pillow, since they are only used in tutorials







Version 0.1.0

We’re happy to announce the first major stable version of mvlearn.
This version includes multiple new algorithms, more utility functions, as well as significant enhancements to the documentation. Here are some highlights of the big updates.


	Deep CCA, (DCCA) in the embed module


	Updated KCCA with multiple kernels


	Synthetic multi-view dataset generator class, GaussianMixture, in the datasets module


	A new module, plotting, which includes functions for visualizing multi-view data, such as crossviews_plot and quick_visualize


	More detailed tutorial notebooks for all algorithms




Additionally, mvlearn now makes the torch and tqdm dependencies optional, so users who don’t need the DCCA or SplitAE functionality do not have to import such a large package. Note this is only the case for installing with pip. Installing from conda includes these dependencies automatically. To install the full version of mvlearn with torch and tqdm from pip, you must include the optional torch in brackets:


pip3 install mvlearn[torch]








or


pip3 install --upgrade mvlearn[torch]








To install without torch, do:


pip3 install mvlearn








or


pip3 install --upgrade mvlearn














          

      

      

    

  

    
      
          
            
  


License

mvlearn is distributed with Apache 2.0 license.

Apache License
                        Version 2.0, January 2004
                        http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

    "License" shall mean the terms and conditions for use, reproduction,
    and distribution as defined by Sections 1 through 9 of this document.

    "Licensor" shall mean the copyright owner or entity authorized by
    the copyright owner that is granting the License.

    "Legal Entity" shall mean the union of the acting entity and all
    other entities that control, are controlled by, or are under common
    control with that entity. For the purposes of this definition,
    "control" means (i) the power, direct or indirect, to cause the
    direction or management of such entity, whether by contract or
    otherwise, or (ii) ownership of fifty percent (50%) or more of the
    outstanding shares, or (iii) beneficial ownership of such entity.

    "You" (or "Your") shall mean an individual or Legal Entity
    exercising permissions granted by this License.

    "Source" form shall mean the preferred form for making modifications,
    including but not limited to software source code, documentation
    source, and configuration files.

    "Object" form shall mean any form resulting from mechanical
    transformation or translation of a Source form, including but
    not limited to compiled object code, generated documentation,
    and conversions to other media types.

    "Work" shall mean the work of authorship, whether in Source or
    Object form, made available under the License, as indicated by a
    copyright notice that is included in or attached to the work
    (an example is provided in the Appendix below).

    "Derivative Works" shall mean any work, whether in Source or Object
    form, that is based on (or derived from) the Work and for which the
    editorial revisions, annotations, elaborations, or other modifications
    represent, as a whole, an original work of authorship. For the purposes
    of this License, Derivative Works shall not include works that remain
    separable from, or merely link (or bind by name) to the interfaces of,
    the Work and Derivative Works thereof.

    "Contribution" shall mean any work of authorship, including
    the original version of the Work and any modifications or additions
    to that Work or Derivative Works thereof, that is intentionally
    submitted to Licensor for inclusion in the Work by the copyright owner
    or by an individual or Legal Entity authorized to submit on behalf of
    the copyright owner. For the purposes of this definition, "submitted"
    means any form of electronic, verbal, or written communication sent
    to the Licensor or its representatives, including but not limited to
    communication on electronic mailing lists, source code control systems,
    and issue tracking systems that are managed by, or on behalf of, the
    Licensor for the purpose of discussing and improving the Work, but
    excluding communication that is conspicuously marked or otherwise
    designated in writing by the copyright owner as "Not a Contribution."

    "Contributor" shall mean Licensor and any individual or Legal Entity
    on behalf of whom a Contribution has been received by Licensor and
    subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
    this License, each Contributor hereby grants to You a perpetual,
    worldwide, non-exclusive, no-charge, royalty-free, irrevocable
    copyright license to reproduce, prepare Derivative Works of,
    publicly display, publicly perform, sublicense, and distribute the
    Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
    this License, each Contributor hereby grants to You a perpetual,
    worldwide, non-exclusive, no-charge, royalty-free, irrevocable
    (except as stated in this section) patent license to make, have made,
    use, offer to sell, sell, import, and otherwise transfer the Work,
    where such license applies only to those patent claims licensable
    by such Contributor that are necessarily infringed by their
    Contribution(s) alone or by combination of their Contribution(s)
    with the Work to which such Contribution(s) was submitted. If You
    institute patent litigation against any entity (including a
    cross-claim or counterclaim in a lawsuit) alleging that the Work
    or a Contribution incorporated within the Work constitutes direct
    or contributory patent infringement, then any patent licenses
    granted to You under this License for that Work shall terminate
    as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
    Work or Derivative Works thereof in any medium, with or without
    modifications, and in Source or Object form, provided that You
    meet the following conditions:

    (a) You must give any other recipients of the Work or
        Derivative Works a copy of this License; and

    (b) You must cause any modified files to carry prominent notices
        stating that You changed the files; and

    (c) You must retain, in the Source form of any Derivative Works
        that You distribute, all copyright, patent, trademark, and
        attribution notices from the Source form of the Work,
        excluding those notices that do not pertain to any part of
        the Derivative Works; and

    (d) If the Work includes a "NOTICE" text file as part of its
        distribution, then any Derivative Works that You distribute must
        include a readable copy of the attribution notices contained
        within such NOTICE file, excluding those notices that do not
        pertain to any part of the Derivative Works, in at least one
        of the following places: within a NOTICE text file distributed
        as part of the Derivative Works; within the Source form or
        documentation, if provided along with the Derivative Works; or,
        within a display generated by the Derivative Works, if and
        wherever such third-party notices normally appear. The contents
        of the NOTICE file are for informational purposes only and
        do not modify the License. You may add Your own attribution
        notices within Derivative Works that You distribute, alongside
        or as an addendum to the NOTICE text from the Work, provided
        that such additional attribution notices cannot be construed
        as modifying the License.

    You may add Your own copyright statement to Your modifications and
    may provide additional or different license terms and conditions
    for use, reproduction, or distribution of Your modifications, or
    for any such Derivative Works as a whole, provided Your use,
    reproduction, and distribution of the Work otherwise complies with
    the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
    any Contribution intentionally submitted for inclusion in the Work
    by You to the Licensor shall be under the terms and conditions of
    this License, without any additional terms or conditions.
    Notwithstanding the above, nothing herein shall supersede or modify
    the terms of any separate license agreement you may have executed
    with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
    names, trademarks, service marks, or product names of the Licensor,
    except as required for reasonable and customary use in describing the
    origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
    agreed to in writing, Licensor provides the Work (and each
    Contributor provides its Contributions) on an "AS IS" BASIS,
    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
    implied, including, without limitation, any warranties or conditions
    of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
    PARTICULAR PURPOSE. You are solely responsible for determining the
    appropriateness of using or redistributing the Work and assume any
    risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
    whether in tort (including negligence), contract, or otherwise,
    unless required by applicable law (such as deliberate and grossly
    negligent acts) or agreed to in writing, shall any Contributor be
    liable to You for damages, including any direct, indirect, special,
    incidental, or consequential damages of any character arising as a
    result of this License or out of the use or inability to use the
    Work (including but not limited to damages for loss of goodwill,
    work stoppage, computer failure or malfunction, or any and all
    other commercial damages or losses), even if such Contributor
    has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
    the Work or Derivative Works thereof, You may choose to offer,
    and charge a fee for, acceptance of support, warranty, indemnity,
    or other liability obligations and/or rights consistent with this
    License. However, in accepting such obligations, You may act only
    on Your own behalf and on Your sole responsibility, not on behalf
    of any other Contributor, and only if You agree to indemnify,
    defend, and hold each Contributor harmless for any liability
    incurred by, or claims asserted against, such Contributor by reason
    of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

    To apply the Apache License to your work, attach the following
    boilerplate notice, with the fields enclosed by brackets "[]"
    replaced with your own identifying information. (Don't include
    the brackets!)  The text should be enclosed in the appropriate
    comment syntax for the file format. We also recommend that a
    file or class name and description of purpose be included on the
    same "printed page" as the copyright notice for easier
    identification within third-party archives.

Copyright 2020 Richard Guo, Ronan Perry, Gavin Mischler, Theo Lee,
    Alexander Chang, Arman Koul, Cameron Franz

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  

None


Validating Multi-view Co-regularized Spectral Clustering on Simulated Data

Here we will validate our implementation of multi-view coregularized spectral clustering by comparing clustering results with those produced by the code associated with the original multi-view co-regularized spectral clustering paper [#3Clu].


[13]:






import numpy as np
from numpy.random import multivariate_normal
from mvlearn.cluster.mv_coreg_spectral import MultiviewCoRegSpectralClustering
from sklearn.datasets import make_moons
from sklearn.metrics import normalized_mutual_info_score as nmi_score
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from scipy.io import savemat
import warnings

%matplotlib inline
warnings.filterwarnings('ignore')
RANDOM_SEED=10








A function to generate 2 views of data for 2 classes

This function takes parameters for means, variances, and number of samples for class and generates data based on those parameters. The underlying probability distribution of the data is a multivariate gaussian distribution.


[2]:






def create_data(seed, vmeans, vvars, num_per_class=500):

    np.random.seed(seed)
    data = [[],[]]

    for view in range(2):
        for comp in range(len(vmeans[0])):
            cov = np.eye(2) * vvars[view][comp]
            comp_samples = np.random.multivariate_normal(vmeans[view][comp], cov, size=num_per_class)
            data[view].append(comp_samples)
    for view in range(2):
        data[view] = np.vstack(data[view])

    labels = list()
    for ind in range(len(vmeans[0])):
        labels.append(ind * np.ones(num_per_class,))

    labels = np.concatenate(labels)

    return data, labels










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[3]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()












Experiments

Here, we check whether or not the clustering results between the two implementations are the same or not. The implementation denoted as “Multi-view Clustering” is the version implemented in this package. The implementation denoted as “Matlab implementation” is produced by the author’s of the original multi-view co-regularized spectral clustering paper and is written in matlab.


Clustering views comprised of simple multivariate gaussian distributions where components are easily separable in both views.

Cluster components 1: * Mean: [3, 3] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)


[4]:






v1_means = [[3, 3], [0, 0]]
v2_means = [[3, 3], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_spectral = MultiviewCoRegSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)

data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_gaussian_data1.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_8_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_8_3.png]





[7]:






matlab_labels = np.loadtxt('../matlab_clusters_gaussian1.csv', delimiter=',')
matlab_labels = (1 - matlab_labels) # Switch colors
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_9_1.png]







We will now run kmeans on the final spectral embedding over 50 trials and compare the average cluster nmi between the two implementations


[14]:






# Run 50 trials for python implementation and compute nmi values
n_trials = 50
nmi_vals = list()
embedding = m_spectral._embedding
for _ in range(n_trials):
    kmeans = KMeans(n_clusters=2, n_init=1)
    preds = kmeans.fit_predict(embedding)
    nmi_vals.append(nmi_score(preds, labels, average_method='arithmetic'))
nmi_vals = np.array(nmi_vals)

# Import results from matlab implementation
matlab_nmi = np.loadtxt('../matlab_nmi_gaussian1.csv', delimiter=',')

# Plot the results
df = pd.DataFrame(np.vstack([matlab_nmi, nmi_vals]).T, columns=['Matlab Code', 'My Code'])
ax = sns.boxplot(data=df)
plt.xlabel('Implementation')
plt.ylabel('NMI')








[14]:






Text(0, 0.5, 'NMI')












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_11_1.png]







Clustering views comprised of simple multivariate gaussians where components are relatively inseparable (highly overlapping) in both viewssomewhat separable (somewhat overlapping) in both views

Cluster components 1: * Mean: [1.5, 1.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)


[16]:






v1_means = [[1.5, 1.5], [0, 0]]
v2_means = [[1.5, 1.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_spectral = MultiviewCoRegSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)
m_clusters = 1 - m_clusters # Flip the colors to make them match

display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)
data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_gaussian_data2.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_13_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_13_3.png]





[18]:






matlab_labels = np.loadtxt('../matlab_clusters_gaussian2.csv', delimiter=',')
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_14_1.png]







We will now run kmeans on the final spectral embedding over 50 trials and compare the average cluster nmi between the two implementations


[19]:






# Run 50 trials for python implementation and compute nmi values
n_trials = 50
nmi_vals = list()
embedding = m_spectral._embedding
for _ in range(n_trials):
    kmeans = KMeans(n_clusters=2, n_init=1)
    preds = kmeans.fit_predict(embedding)
    nmi_vals.append(nmi_score(preds, labels, average_method='arithmetic'))
nmi_vals = np.array(nmi_vals)

# Import results from matlab implementation
matlab_nmi = np.loadtxt('../matlab_nmi_gaussian2.csv', delimiter=',')

# Plot the results
df = pd.DataFrame(np.vstack([matlab_nmi, nmi_vals]).T, columns=['Matlab Code', 'My Code'])
ax = sns.boxplot(data=df)
plt.xlabel('Implementation')
plt.ylabel('NMI')








[19]:






Text(0, 0.5, 'NMI')












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_16_1.png]





[20]:






def create_moons(seed, num_per_class=500):

    np.random.seed(seed)
    data = []
    labels = []

    for view in range(2):
        v_dat, v_labs = make_moons(num_per_class*2,
                random_state=seed + view, noise=0.1, shuffle=False)
        if view == 1:
            v_dat = v_dat[:, ::-1]

        data.append(v_dat)
    for ind in range(len(data)):
        labels.append(ind * np.ones(num_per_class,))
    labels = np.concatenate(labels)

    return data, labels










Performance on moons data

For this experiment, we use the sklearn make_moons function to make two interleaving half circles. We then use spectral clustering to separate the two views. In this experiment, the two views are identical.


[21]:






data, labels = create_moons(RANDOM_SEED)
m_spectral = MultiviewCoRegSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)

data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_moons_data1.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_19_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_19_3.png]





[28]:






matlab_labels = np.loadtxt('../matlab_clusters_moons1.csv', delimiter=',')
matlab_labels = 2 - matlab_labels
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_20_1.png]







We will now run kmeans on the final spectral embedding over 50 trials and compare the average cluster nmi between the two implementations


[29]:






# Run 50 trials for python implementation and compute nmi values
n_trials = 50
nmi_vals = list()
embedding = m_spectral._embedding
for _ in range(n_trials):
    kmeans = KMeans(n_clusters=2, n_init=1)
    preds = kmeans.fit_predict(embedding)
    nmi_vals.append(nmi_score(preds, labels, average_method='arithmetic'))
nmi_vals = np.array(nmi_vals)

# Import results from matlab implementation
matlab_nmi = np.loadtxt('../matlab_nmi_moons1.csv', delimiter=',')

# Plot the results
df = pd.DataFrame(np.vstack([matlab_nmi, nmi_vals]).T, columns=['Matlab Code', 'My Code'])
ax = sns.boxplot(data=df)
plt.xlabel('Implementation')
plt.ylabel('NMI')








[29]:






Text(0, 0.5, 'NMI')












[image: ../../../_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_22_1.png]







Conclusions

From the above experiments, we can see that this implementation and the matplab implementation of multi-view spectral clustering from the paper both produce the same clustering results, which provides evidence that the implementations are equivalent.







          

      

      

    

  

    
      
          
            
  

None


Validating Multi-view Spectral Clustering

Here we will validate our implementation of multi-view spectral clustering by comparing clustering results with those produced by the code associated with the paper A Co-training Approach for Multi-view Spectral Clustering by Kumar and Daumé.


[1]:






import numpy as np
from numpy.random import multivariate_normal
from mvlearn.cluster.mv_spectral import MultiviewSpectralClustering
from sklearn.cluster import SpectralClustering
from sklearn.datasets import make_moons
from sklearn.metrics import normalized_mutual_info_score as nmi_score
import matplotlib.pyplot as plt
from scipy.io import savemat
import warnings

%matplotlib inline
warnings.filterwarnings('ignore')
RANDOM_SEED=10








A function to generate 2 views of data for 2 classes

This function takes parameters for means, variances, and number of samples for class and generates data based on those parameters. The underlying probability distribution of the data is a multivariate gaussian distribution.


[2]:






def create_data(seed, vmeans, vvars, num_per_class=500):

    np.random.seed(seed)
    data = [[],[]]

    for view in range(2):
        for comp in range(len(vmeans[0])):
            cov = np.eye(2) * vvars[view][comp]
            comp_samples = np.random.multivariate_normal(vmeans[view][comp], cov, size=num_per_class)
            data[view].append(comp_samples)
    for view in range(2):
        data[view] = np.vstack(data[view])

    labels = list()
    for ind in range(len(vmeans[0])):
        labels.append(ind * np.ones(num_per_class,))

    labels = np.concatenate(labels)

    return data, labels










Creating a function to display data and the results of clustering

The following function plots both views of data given a dataset and corresponding labels.


[3]:






def display_plots(pre_title, data, labels):

    # plot the views
    plt.figure()
    fig, ax = plt.subplots(1,2, figsize=(14,5))
    dot_size=10
    ax[0].scatter(data[0][:, 0], data[0][:, 1],c=labels,s=dot_size)
    ax[0].set_title(pre_title + ' View 1')
    ax[0].axes.get_xaxis().set_visible(False)
    ax[0].axes.get_yaxis().set_visible(False)

    ax[1].scatter(data[1][:, 0], data[1][:, 1],c=labels,s=dot_size)
    ax[1].set_title(pre_title + ' View 2')
    ax[1].axes.get_xaxis().set_visible(False)
    ax[1].axes.get_yaxis().set_visible(False)

    plt.show()








Experiments

Here, we check whether or not the clustering results between the two implementations are the same or not. The implementation denoted as “Multi-view Clustering” is the version implemented in this package. The implementation denoted as “Matlab implementation” is produced by the author’s of the original multi-view spectral clustering paper and is written in matlab.


Clustering views comprised of simple multivariate gaussian distributions where components are easily separable in both views.

Cluster components 1: * Mean: [3, 3] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)


[4]:






v1_means = [[3, 3], [0, 0]]
v2_means = [[3, 3], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_spectral = MultiviewSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)

data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_gaussian_data1.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_8_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_8_3.png]





[6]:






matlab_labels = np.loadtxt('gauss_cluster1.csv', delimiter=',')
matlab_labels = (matlab_labels - 1) # Switch the color on the plot
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_9_1.png]







Clustering views comprised of simple multivariate gaussians where components are relatively inseparable (highly overlapping) in both viewssomewhat separable (somewhat overlapping) in both views

Cluster components 1: * Mean: [1.5, 1.5] (both views) * Covariance = I (both views)

Cluster components 2: * Mean = [0, 0] (both views) * Covariance = I (both views)


[9]:






v1_means = [[1.5, 1.5], [0, 0]]
v2_means = [[1.5, 1.5], [0, 0]]
v1_vars = [1, 1]
v2_vars = [1, 1]
vmeans = [v1_means, v2_means]
vvars = [v1_vars, v2_vars]

data, labels = create_data(RANDOM_SEED, vmeans, vvars)
m_spectral = MultiviewSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)

display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)
data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_gaussian_data2.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_11_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_11_3.png]





[10]:






matlab_labels = np.loadtxt('gauss_cluster2.csv', delimiter=',')
matlab_labels = (matlab_labels - 1) # Switch color on plot
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_12_1.png]





[4]:






def create_moons(seed, num_per_class=500):

    np.random.seed(seed)
    data = []
    labels = []

    for view in range(2):
        v_dat, v_labs = make_moons(num_per_class*2,
                random_state=seed + view, noise=0.05, shuffle=False)
        if view == 1:
            v_dat = v_dat[:, ::-1]

        data.append(v_dat)
    for ind in range(len(data)):
        labels.append(ind * np.ones(num_per_class,))
    labels = np.concatenate(labels)

    return data, labels










Performance on moons data

For this experiment, we use the sklearn make_moons function to make two interleaving half circles. We then use spectral clustering to separate the two views. In this experiment, the two views are identical.


[12]:






data, labels = create_moons(RANDOM_SEED)
m_spectral = MultiviewSpectralClustering(n_clusters=2, info_view=0,
                random_state=RANDOM_SEED, n_init=100)
m_clusters = m_spectral.fit_predict(data)
display_plots('Ground Truth' ,data, labels)
display_plots('Multi-view Clustering' ,data, m_clusters)

data = np.stack(data)
items = dict()
items['X1'] = data[0]
items['X2'] = data[1]
items['truth'] = labels
savemat('mv_moons_data1.mat', items)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_15_1.png]









<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_15_3.png]





[14]:






matlab_labels = np.loadtxt('moons_cluster1.csv', delimiter=',')
matlab_labels = (matlab_labels - 1) # Switch color on plot
display_plots('Matlab Implementation' ,data, matlab_labels)












<Figure size 432x288 with 0 Axes>












[image: ../../../_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_16_1.png]







Conclusions

From the above experiments, we can see that this implementation and the matplab implementation of multi-view spectral clustering from the paper both produce the same clustering results, which provides evidence that the implementations are equivalent.











          

      

      

    

  

    
      
          
            
  

None


Validating Multi-View Spherical KMeans by Replicating Paper Results

Here we will validate the implementation of multi-view spherical kmeans by replicating the right side of figure 3 from the Multi-View Clustering paper by Bickel and Scheffer.


[2]:






import sklearn
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import scipy as scp
from scipy import sparse
import mvlearn
from mvlearn.cluster.mv_spherical_kmeans import MultiviewSphericalKMeans
from joblib import Parallel, delayed
import matplotlib.pyplot as plt
import warnings
warnings.simplefilter('ignore') # Ignore warnings








A function to recreate the artificial dataset from the paper

The experiment in the paper used the 20 Newsgroup dataset, which consists of around 18000 newsgroups posts on 20 topics. This dataset can be obtained from scikit-learn. To create the artificial dataset used in the experiment, 10 of the 20 classes from the 20 newsgroups dataset were selected and grouped into 2 groups of 5 classes, and then encoded as tfidf vectors. These now represented the 5 multi-view classes, each with 2 views (one from each group). 200 examples were randomly sampled from each
of the 20 newsgroups, producing 1000 concatenated examples uniformly distributed over the 5 classes.


[ ]:






NUM_SAMPLES = 200

#Load in the vectorized news group data from scikit-learn package
news = fetch_20newsgroups(subset='all')
all_data = np.array(news.data)
all_targets = np.array(news.target)
class_names = news.target_names

#A function to get the 20 newsgroup data
def get_data():

    #Set class pairings as described in the multiview clustering paper
    view1_classes = ['comp.graphics','rec.motorcycles', 'sci.space', 'rec.sport.hockey', 'comp.sys.ibm.pc.hardware']
    view2_classes = ['rec.autos', 'sci.med','misc.forsale', 'soc.religion.christian','comp.os.ms-windows.misc']

    #Create lists to hold data and labels for each of the 5 classes across 2 different views
    labels =  [num for num in range(len(view1_classes)) for _ in range(NUM_SAMPLES)]
    labels = np.array(labels)
    view1_data = list()
    view2_data = list()

    #Randomly sample 200 items from each of the selected classes in view1
    for ind in range(len(view1_classes)):
        class_num = class_names.index(view1_classes[ind])
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], NUM_SAMPLES)
        view1_data.append(class_data[indices])
    view1_data = np.concatenate(view1_data)

    #Randomly sample 200 items from each of the selected classes in view2
    for ind in range(len(view2_classes)):
        class_num = class_names.index(view2_classes[ind])
        class_data = all_data[(all_targets == class_num)]
        indices = np.random.choice(class_data.shape[0], NUM_SAMPLES)
        view2_data.append(class_data[indices])
    view2_data = np.concatenate(view2_data)

    #Vectorize the data
    vectorizer = TfidfVectorizer()
    view1_data = vectorizer.fit_transform(view1_data)
    view2_data = vectorizer.fit_transform(view2_data)

    #Shuffle and normalize vectors
    shuffled_inds = np.random.permutation(NUM_SAMPLES * len(view1_classes))
    view1_data = sparse.vstack(view1_data)
    view2_data = sparse.vstack(view2_data)
    view1_data = np.array(view1_data[shuffled_inds].todense())
    view2_data = np.array(view2_data[shuffled_inds].todense())
    magnitudes1 = np.linalg.norm(view1_data, axis=1)
    magnitudes2 = np.linalg.norm(view2_data, axis=1)
    magnitudes1[magnitudes1 == 0] = 1
    magnitudes2[magnitudes2 == 0] = 1
    magnitudes1 = magnitudes1.reshape((-1,1))
    magnitudes2 = magnitudes2.reshape((-1,1))
    view1_data /= magnitudes1
    view2_data /= magnitudes2
    labels = labels[shuffled_inds]

    return view1_data, view2_data, labels













Downloading 20news dataset. This may take a few minutes.
Downloading dataset from https://ndownloader.figshare.com/files/5975967 (14 MB)









Function to compute cluster entropy

The function below is used to calculate the total clustering entropy using the formula described in the paper.


[3]:






def compute_entropy(partitions, labels, k, num_classes):

    total_entropy = 0
    num_examples = partitions.shape[0]
    for part in range(k):
        labs = labels[partitions == part]
        part_size = labs.shape[0]
        part_entropy = 0
        for cl in range(num_classes):
            prop = np.sum(labs == cl) * 1.0 / part_size
            ent = 0
            if(prop != 0):
                ent = - prop * np.log2(prop)
            part_entropy += ent
        part_entropy = part_entropy * part_size / num_examples
        total_entropy += part_entropy
    return total_entropy










Functions to Initialize Centroids and Run Experiment

The randSpherical function initializes the initial cluster centroids by taking a uniform random sampling of points on the surface of a unit hypersphere. The getEntropies function runs Multi-View Spherical Kmeans Clustering on the data with n_clusters from 1 to 10 once each. This function essentially runs one trial of the experiment.


[4]:






def randSpherical(n_clusters, n_feat1, n_feat2):
    c_centers1 = np.random.normal(0, 1, (n_clusters, n_feat1))
    c_centers1 /= np.linalg.norm(c_centers1, axis=1).reshape((-1, 1))
    c_centers2 = np.random.normal(0, 1, (n_clusters, n_feat2))
    c_centers2 /= np.linalg.norm(c_centers2, axis=1).reshape((-1, 1))
    return [c_centers1, c_centers2]








[7]:






def getEntropies():

    v1_data, v2_data, labels = get_data()

    entropies = list()
    for num in range(1,11):

        centers = randSpherical(num, v1_data.shape[1], v2_data.shape[1])
        kmeans = MultiviewSphericalKMeans(n_clusters=num, init=centers, n_init=1)
        pred = kmeans.fit_predict([v1_data, v2_data])
        ent = compute_entropy(pred, labels, num, 5)
        entropies.append(ent)
    print('done')
    return entropies










Running multiple trials of the experiment

It was difficult to exactly reproduce the results from the Multi-View Clustering Paper because the experimentors randomly sampled a subset of the 20 newsgroup dataset samples to create the artificial dataset, and this random subset was not reported. Therefore, in an attempt to at least replicate the overall shape of the distribution of cluster entropy over the number of clusters, we resample the dataset and recreate the artificial dataset each trial. Therefore, each trial consists of resampling
and recreating the artificial dataset, and then running Multi-view Spherical KMeans clustering on that dataset for n_clusters 1 to 10 once each. We performed 80 such trials and the results of this are shown below.


[8]:






#Do spherical kmeans and get entropy values for each k for multiple trials
n_workers = 10
n_trials = 80
mult_entropies1 = Parallel(n_jobs=n_workers)(
    delayed(getEntropies)() for i in range(n_trials))










Experiment Results

We see the results of this experiment below. Here, we have more or less reproduced the shape of the distribution as seen in figure 3 from the Multi-view Clustering Paper.


[9]:






mult_entropies1 = np.array(mult_entropies1)
ave_m_entropies = np.mean(mult_entropies1, axis=0)
std_m_entropies = np.std(mult_entropies1, axis=0)
x_values = list(range(1, 11))
plt.errorbar(x_values, ave_m_entropies, std_m_entropies, capsize=5, color = '#F46C12')
plt.xlabel('k')
plt.ylabel('Entropy')
plt.legend(['2 Views'])
plt.rc('axes', labelsize=12)
plt.show()












[image: ../../../_images/tutorials_cluster_MVSphericalKMeans_SphericalKMeansFigureValidation_12_0.png]










          

      

      

    

  _images/tutorials_decomposition_group_ica_tutorial_21_0.png
25
00
25

25
00
25

0 20 00 750 1000 1250 1500 1750 2000






_images/tutorials_decomposition_group_ica_tutorial_4_0.png
20

ED

750 1000 1250 1500 1750 2000





_images/tutorials_decomposition_group_ica_tutorial_16_1.png





_images/tutorials_decomposition_group_ica_tutorial_18_0.png
20

500

750 1000 1250 1500 1750 2000





_images/tutorials_decomposition_group_ica_tutorial_8_0.png
20

500

750 1000 1250 1500 1750 2000





_images/tutorials_embed_dcca_tutorial_21_0.png
Transformed Testing Data View 1 vs. View 2 (Sinusoidal Transform + noise)

" r.'.:{'a
o

..-‘?
2 -’.;:, ?

View 2 Dim 1

View 2 Dim 2

RN

m 11

E

£ .

H] 0

g L

s 4.2
I0 1

View 2 Dim 4

View 1Dim 2 View 1Dim 3 View 1 Dim 4





_images/tutorials_decomposition_mv_ica_tutorial_3_0.png
— vienica
e
o 1 | — G
H
s
H
e

102 107 10° 100
Data noise





_images/tutorials_embed_dcca_tutorial_9_0.png
Testing Data View 1 vs. View 2 (Polynomial Transform + noise)
1004 T wo{ = 1004 v 1004
. .
T 754 75 . 75 75
£ .
2 soq 50 50 50
H
2 25 25 25 25
H
[LEE e 00 004
25 00 25
15
~ s :
£ 10
5
g
H
o s

View 2 Dim 3

View 2 Dim 4

25 00 25

View 1 Dim 4






_images/tutorials_embed_dcca_tutorial_6_0.png
View 2 Dim 1

View 2 Dim 2

Latent Variable

R

R

View1Dim1

0
View1Dim2

H






_images/tutorials_embed_kcca_icd_tutorial_10_0.png
View 2 Dim 1

View 2 Dim 2

.:#.... ) . :.... e

y kL ey
“ * 3
= 7
R .
. o . . .on? ""

. K - L

. . .

e o KD

;.'... ~.:..

View 1Dim 2





_images/tutorials_embed_gcca_tutorial_9_0.png
View 2 Dim 2 View 2 Dim 1

View 2 Dim 3

View 1Dim 1

Profile correlations vs Pixel Averages

View 1Dim 2

View 1Dim 3





_images/tutorials_embed_kcca_icd_tutorial_20_1.png
100

uonefaL0 [ed1uou:

0754

5)

0704





_images/tutorials_embed_kcca_icd_tutorial_14_0.png
View 2 Dim 1

View 2 Dim 2

. ..
- O
% . . oo
' o
-
el o
o . o
o - Y ~°
e .'. N '/
., e !
“on F 4

View 1Dim 2






_images/tutorials_embed_kcca_icd_tutorial_7_0.png
View 1Dim 2

Twia z men Zwia z men

View 1 Dim 1






_images/tutorials_embed_kcca_icd_tutorial_25_1.png
Run-Time

01754

01504

01254

0100

00754

00504

00254

00004






_images/tutorials_embed_dcca_tutorial_17_0.png
View 2 Dim 2
View 2 Dim 3 View 2 Dim 1

View 2 Dim 4

Testing Data View 1 vs. View 2 (Polynomial Transform + noise)

109 10 7] 10
4 q . ® q
0s 0s o 05
00+ 00+ v 00+

-
05 054 05

-24 .
-10- -10-

25 o0 25 25 o0 25
10 10 ¥ 10
0s 05 05

o o

00 00 . 00
o5 —os4. 05

.
-10 —104e - | 104

25 o0 25

- -
.
;o
of
3 ]
25 00 25 -25 00 25 25 00 25 25 00 25
View 1 Dim 1 View 1 Dim 2 View 1 Dim 3 View 1 Dim 4






_images/tutorials_embed_dcca_tutorial_13_0.png
Transformed Testing Data View 1 vs. View 2 (Polynomial Transform + noise)

View 2 Dim 1

View 2 Dim 2

View 2 Dim 3

View 2 Dim 4

View 1Dim 1

View 1Dim 2

View 1Dim 3

-
0 %
AR
o
* o
5 G 25
v . 4 N
.00t g
. 24
od o]
R G 75 Er W 75

View 1Dim 4





_images/tutorials_decomposition_ajive_tutorial_6_1.png
Eigenvalue

05

04

03

02

01

00

Scree Plot View 2

1

& 5
Principal Components






_images/tutorials_decomposition_group_ica_tutorial_12_0.png
0 20 00 750 1000 1250 1500 1750 2000






_images/tutorials_decomposition_ajive_tutorial_17_0.png
View: x observed data View: y observed data

View: xjoint View: y joint

18

o
00

05
12

View: x individual

View: x noise

View: y individual

-00
05
10

r
8 |
|

View: y noise

0

4





_images/tutorials_decomposition_ajive_tutorial_6_0.png
Eigenvalue

04

03

02

01

00

Scree Plot View 1

1

& 5
Principal Components






_images/tutorials_embed_SplitAE_Tutorial_21_29.png
O -H AN MS<T D O~ 0O

[ ]

® o 0 0

40 A
20 A

T
o

T
o
R

T
o
¥





_images/tutorials_embed_SplitAE_Tutorial_21_28.png
Error

Errors during training

1.45 4

1.40 4

1.35 1

1.30 1

1.25 1

1.20 1

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_5.png
40 A

20 A

_20 -

_40 -

e O
o 1
o 2
o 3
o 4

5
o 6
o 7

8
o 9

|
w
o






_images/tutorials_embed_SplitAE_Tutorial_21_4.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 4

1.25 1

1.20 1

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_8.png
40 A

30 A
20 A
107 -t%
e 0
01 o 1
o 2
-101 o 3
o] ® 4
B 5
30 © 6
- o 7
40 - 8
o 9
—40 -20 20 40






_images/tutorials_embed_SplitAE_Tutorial_21_7.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 4

1.251

1.20 1

1.15 4

1.10 4

—— train error

1.05

10






_images/tutorials_embed_SplitAE_Tutorial_21_25.png
Error

Errors during training

1.57 —— train error
1.4
1.3 A
1.2 A
1.1
0 4 6 8 10






_images/tutorials_embed_SplitAE_Tutorial_21_23.png





_images/tutorials_embed_SplitAE_Tutorial_21_26.png
O AN MS<T N O~ 0O

e e 000 [ N ®

40 A

20 A

T T T
o o o
“ ¥





_images/tutorials_embed_mvmds_tutorial_14_1.png
Component 3 Component 2 Component 1

Component 4

First 4 PCA Components Computed With 1 View
o075

050
025
000
025
by ™

050

075

050
o
025
000
025
O

050

075
050
025 .
R o
000
025
.
050

075

050
025
000
025
050

05 o0 o5 05 00 05 05 00 05 05 00 05
Component 1 Component 2. Component 3. Component 4






_images/tutorials_pipeline_Scikit-learn_integration_14_0.png
100

o075

050

025

000

025

050

075

Lo

Sources

00

02

04

o5

08

10






_images/tutorials_embed_mvmds_tutorial_7_0.png
Component 2

008

004

002

000

002

008

MVMDS Reduced Data (10-class)

PCA Reduced Data (10-class)

Companent 2

1500

1000

500

500

1000

o6 o4 o2 oo0 oz o004
‘Component 1

a0 2000 © 2000 4000 6000 @000 10000 12000
‘Component 1





_images/tutorials_pipeline_Scikit-learn_integration_16_0.png
004

002

000

002

004

recovered signals

00

02

04

o5

08

10






_images/tutorials_pipeline_Scikit-learn_integration_14_1.png
signals

00

02

04

o5

08

10






_images/tutorials_plotting_quick_visualize_tutorial_4_0.png
Component 2

008

006

004

002

000

0024

0044

0064

0084

0104 -0.02 000 0.02 0.04 006 008
Component 1






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_10_1.png
One Randomization of View 1

One Randomization of View 2

o Classo
o Class1
98 Labeled Class 0

9§ Labeled Class 1 7

*o aa,

PiF

o Classo .
o Class1 .
§¢ LabeledClass0 o
9§ Labeled Class 1 .‘ V“






_images/tutorials_plotting_quick_visualize_tutorial_6_0.png
Component 2

Labeled Classes.

008

0064

0044

0024

0004

0024

0044

~0.06 4

0084

0104 -0.02 000 0.02 0.04 006 008
Component 1






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_11_0.png
When Views are Independent and Labeled Samples are Random
CgTraining Outperforms Single Views and Naive Concatenation

T oos

£

090

2

S oss

3 080

g — View1

£0759  View?

: 0701 — Naive Concatenated
2 —— multiview

$ 5 & % 75 a0 s o b5 a0

Iterations of Co-Training





_images/tutorials_embed_kcca_tutorial_20_0.png
View 2 Dim 3 View 2 Dim 2 View 2 Dim 1

View 2 Dim 4

[ 4 L4 1} L]

- - ] L]

- - . .
View 1Dim 1 View 1Dim 2 View 1Dim 3 View 1Dim 4






_images/tutorials_embed_kcca_tutorial_18_0.png
.
Y .
& B8 M X
oo
. .
B i
Twia z mein Zwia z mein € wia z mein g z men

View 1 Dim 2 View 1Dim 3 View 1 Dim 4

View 1Dim 1





_images/tutorials_embed_kcca_tutorial_30_0.png
Twiaz man

Zwiaz man

View 1Dim 2

View 1Dim 1






_images/tutorials_embed_kcca_tutorial_28_0.png
View 1Dim 2

Twia z main Zwia z main

View 1Dim 1






_images/tutorials_embed_mvmds_proof_14_1.png
Feature 2

2

First Two Features of First View

Feature 1

2






_images/tutorials_embed_kcca_tutorial_9_0.png
View 2 Dim 3 View 2 Dim 2 View 2 Dim 1

View 2 Dim 4






_images/tutorials_embed_mvmds_proof_20_1.png
2nd Component

MVMDS Components (With Noise) PCA Naive Multiview Components (With Noise)

Tst Component Tst Component






_images/tutorials_embed_mvmds_proof_17_1.png
2nd Component

MVMDS Components PCA Naive Multiview Components

Tst Component Tst Component






_images/tutorials_embed_mvmds_tutorial_13_1.png
Component 3 Component 2 Component 1

Component 4

o075
0050
o025
0000

0025

0050

0075

o075
0050
o025
0000

0025

0050

0075

o075
0050
o025
0000

0025

0050

0075

o075
0050
o025
0000

0025

0050

0075

First 4 MVMDS Components Computed With 6 Views (No Noise)

A A A

w

& B

c N

005 000 005
Component 1

005 000 o005
Component 2

005 000 005
Component 3

005 000 005
Component 4





_images/tutorials_embed_mvmds_tutorial_10_0.png
Component 2

008

008

004

002

000

002

008

008

MVMDS Reduced Data (4-class)

PCA Reduced Data (4-class)

Companent 2

1500

1000

500

500

1000

~00a 002 odo o002 0bs o006 008
Component 1

a0 2000 © 000 4000 6000 @000 10600
Component 1





_images/tutorials_embed_kcca_tutorial_11_0.png
View 2 Dim 3 View 2 Dim 2 View 2 Dim 1

View 2 Dim 4

.

i

.4

.

ade

View 1Dim 1

View 1Dim 2

View 1Dim 3

View 1Dim 4






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_12_2.png
Ground Truth View 2

Ground Truth View 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_12_4.png
Multi-view Clustering View 2

Multi-view Clustering View 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_10_2.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_10_4.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_16_2.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_16_4.png
Multi-view Clustering View 2

Multi-view Clustering View 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_14_2.png
Ground Truth View 1 Ground Truth View 2

P






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_14_4.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_19_2.png





_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_SimulatedData_19_4.png
Multi-view Clustering View 1

Multi-view Clustering View 2






_images/tutorials_embed_SplitAE_Tutorial_13_0.png
05

25

50

view 1

43 %43

20





_images/tutorials_embed_SplitAE_Tutorial_11_1.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 1

1.251

1.20 1

1.15 4

1.10 4

—— train error
—— test error






_images/tutorials_embed_SplitAE_Tutorial_13_2.png
o

5

S

0

predicted view 2

£939

1

£

20

g





_images/tutorials_embed_SplitAE_Tutorial_13_1.png
reconstructed view 1

0
N0S 9493 a%9
0 25 50 75 100 125 150 175 200






_images/tutorials_cluster_MVCoregSpectral_MVCoregularizedSpectral_Tutorial_7_0.png
Component 2

Ground Truth

0064

0044

0024

0004

0024

0044

006

0,08 —0.06 -0.04 0.02 000 002 004
Component 1






_images/tutorials_cluster_MVCoregSpectral_MVCoregularizedSpectral_Tutorial_7_1.png
Component 2

Multi-view Clustering

0064

0044

0024

0004

0024

0044

006

0,08 —0.06 -0.04 0.02 000 002 004
Component 1






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_11_1.png
1e-12+9.895915066e-1

2075

2050

2025

g 20
1975
1950

19.25

13.00

Matiab Code My Code
Implementation





_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_10_4.png
Multi-view Clustering View 0 Multi-view Clustering View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_12_2.png
Ground Truth View 0 Ground Truth View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalKMeans_Tutorial_10_3.png
Multi-view KMeans Clusters View 1 Multi-view KMeans Clusters View 2

24
it a@g*ﬁ* ;






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_10_2.png
Ground Truth View 0 Ground Truth View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_14_4.png
Multi-view Clustering View 0 Multi-view Clustering View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_16_2.png
Ground Truth View 0 Ground Truth View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_12_4.png
Multi-view Clustering View 0 Multi-view Clustering View 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_14_2.png
Ground Truth View 1

Ground Truth View 0






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalValidation_SimulatedData_16_4.png
Multi-view Clustering View 0 Multi-view Clustering View 1






_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_15_0.png
02

Component 2

00

Latent Positions from Omnibus Embedding

View 1 (76 Fourier Coeffs)
View 2 (216 profile correlations)

S

o015

020

o5 050 B3
Component 1

030

035





_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_10_0.png
ns from Omnibus Embedding

Latent Posi

View 1

View 2

015

010

005

Z uauodwo)

005

010

050 0% o34 o3 0%
Component 1

028

026





_images/tutorials_embed_Omnibus_Embedding_for_Multiview_Data_5_0.png
Component 2

025

020

015

010

005

000

005

Latent Positions from Omnibus Embedding

= Viewl
+  View 2

L]
» L]
L]
L]
L]
L]
» L]
028 030 032 034 036 o3 030

Component 1






_images/tutorials_cluster_MVSphericalKMeans_MVSphericalKMeans_Tutorial_10_1.png
True Labels View 2

True Labels View 1






_images/tutorials_cluster_multiview_vs_singleview_clustering_16_1.png
Predicted Clusters






_images/tutorials_cluster_multiview_vs_singleview_clustering_4_0.png
Fourier

Coefficients

Samples.

Features

7





_images/tutorials_cluster_multiview_vs_singleview_clustering_11_1.png
True Labels.






_images/tutorials_cluster_multiview_vs_singleview_clustering_14_1.png
Predicted Clusters






_images/tutorials_cluster_multiview_vs_singleview_clustering_4_3.png





_images/tutorials_cluster_multiview_vs_singleview_clustering_4_4.png
Zernike
Moments






_images/tutorials_cluster_multiview_vs_singleview_clustering_4_1.png
Profile
Correlations

Features





_images/tutorials_cluster_multiview_vs_singleview_clustering_4_2.png
Karhunen-
Loeve

]
Features





_images/tutorials_embed_SplitAE_Tutorial_21_14.png
O N MS<T N O~ 0O

® e 000 [ N ®

T T
o o
R

40
20
—40 A





_images/tutorials_embed_SplitAE_Tutorial_21_17.png
40 A
20 A

20 30 40

10

=20 -10

-30





_images/tutorials_embed_SplitAE_Tutorial_21_16.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 4

1.251

1.20 1

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_2.png
® 6 0 00 [ N ®

-30 =20 -10

—40

T T
o o
R

40
20 1

T
o
¥





_images/tutorials_embed_SplitAE_Tutorial_21_19.png
Error

Errors during training

1.5 :
—— train error
1.4
1.3
1.2
1.1
0 4 6 8 10






_images/tutorials_embed_SplitAE_Tutorial_21_22.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 1

1.25 1

1.20 4

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_20.png
40 A

20 A

_20 -

_40 -

0 000

O oo ~NOoO U WNHO

-30

=20

-10






_images/tutorials_embed_SplitAE_Tutorial_21_10.png
Error

Errors during training

1.51 —— train error
1.4
1.3
1.2
1.1 A
0 4 6 8 10






_images/tutorials_embed_SplitAE_Tutorial_21_1.png
Error

Errors during training

1.45 4

1.40 4

1.35 1

1.30 4

1.251

1.20 1

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_13.png
Error

Errors during training

1.45 4

1.40 4

1.351

1.30 4

1.25 1

1.20 1

1.15 4

1.10 4

—— train error

10






_images/tutorials_embed_SplitAE_Tutorial_21_11.png
.
a0’ . &
O d AN M<T N © ™~ 0O

40 -

20 A

o o o
Tof





_images/tutorials_cluster_MVSphericalKMeans_SphericalKMeansFigureValidation_12_0.png
£ 2views

20

15

Kdosu3

05






_images/tutorials_cluster_multiview_vs_singleview_clustering_11_0.png
Unlabeled






_images/tutorials_datasets_load_UCImultifeature_4_1.png
Component 2

10-class data

006

0044

0024

0004

002

0044

0061

0006 -004 —0.02 000
Component 1

002

004






_images/tutorials_datasets_load_UCImultifeature_6_1.png
Component 2

2-class data

015

0104

0054

0004

0054

010

0154

0204

~0.075-0.050-0.025 0.000 0.025 0.050 0075
Component 1






_images/tutorials_decomposition_ajive_tutorial_16_0.png
20000

10000

iyl Re
A

uﬁﬁé&





_images/tutorials_decomposition_ajive_tutorial_13_0.png





_images/tutorials_decomposition_ajive_tutorial_14_0.png
View: x1 observed data

View: x1 individual

View: x1 noise

008
004
000

View: x2 observed data
s

View: x2 joint

View: x2 individual

View: x2 noise

008
004
000





_images/tutorials_embed_SplitAE_Tutorial_19_5.png
40
L4
20
e 0
ol ® 1
e 2
e 3
o 4
-20 ;
o 6
o 7
8
-404 * 9
40 -30 -20 -10 0 10 20 30 40






_images/tutorials_embed_SplitAE_Tutorial_19_4.png
40

20 A

_20 -

_40 -

O oo N U WNHO

|
w
o






_images/tutorials_embed_SplitAE_Tutorial_19_7.png
40 A

20 A

_20 -

_40 -

O oo ~NOoO U WNHO

—40

|
w
o






_images/tutorials_embed_SplitAE_Tutorial_19_6.png
O AN MS<T N O~ 0O

® e 600 [ N ®

=20 -10

-30

T T
o o
R

40 -
20 1

_40 -





_images/tutorials_embed_SplitAE_Tutorial_19_9.png
O ANMS<T D O~ ©

(o)}

40 A

30 A

T
o
o

T T T T
o o o o

_30 -





_images/tutorials_embed_SplitAE_Tutorial_19_8.png
40 A

20 A

=20 A

—40

0 000

O 0o ~NOoO U WNH O

|
w
o






_images/tutorials_embed_SplitAE_Tutorial_19_0.png
40 A

20 A

_20 -

—40 1

o0 000

—40






_images/tutorials_embed_SplitAE_Tutorial_16_0.png
O -H N M<T 0D O~ ©

® e 0600 { 2N ]

(o)}

40

30 A

T
o
o

T
o
-

T T T T
o o o o
T

_40 -





_images/tutorials_embed_SplitAE_Tutorial_19_2.png
O H AN MS<T N O~ 0O

® e 000 [ N ®

T T
o o
R

40 1
201
—40





_images/tutorials_embed_SplitAE_Tutorial_19_1.png
30 A

20 A

_10 -

_20 -

_30 -

_40 -

e0e 00 0,

-

|
Eloow~wourwNnro

=20 0 20 40






_images/tutorials_embed_SplitAE_Tutorial_19_3.png
1

«

O N M<T N O~ OO

® e 0o 00 L

40

40 A

20 A

T
o

20
—40





_images/tutorials_cluster_multiview_vs_singleview_clustering_9_0.png
Unlabeled






_images/tutorials_cluster_multiview_vs_singleview_clustering_9_1.png
True Labels.






_images/tutorials_cluster_multiview_vs_singleview_clustering_4_5.png
Morphological
Features

10
08
05
0s
02
00
3

Features





_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_14_1.png
Matlab Implementation View 1 Matlab Implementation View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_16_1.png
[0

06500

06475

06450

06425

06400

06375

06350

06325

06300

Matiab Code

Implementation

My Code






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_13_1.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_13_3.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_20_1.png
Matlab Implementation View 1 Matlab Implementation View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_22_1.png
Nl

0184

0183

0182

0181

0180

0179

0178

0177

0176

Matiab Code
Implementation

My Code






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_19_1.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_19_3.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_8_1.png
Ground Truth View 1

Ground Truth View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_8_3.png
Multi-view Clustering View 1

Multi-view Clustering View 2






_images/tutorials_cluster_MVCoregSpectral_MultiviewCoRegSpectralValidationMatlabComparison_9_1.png
Matlab Implementation View 1

Matlab Implementation View 2






nav.xhtml

    
      Table of Contents


      
        		
          Overview of mvlearn
        


        		
          Install
          
            		
              Installing the released version with pip
              
                		
                  Including optional torch dependencies for full functionality
                


              


            


            		
              Installing the released version with conda-forge
            


            		
              Python package dependencies
            


            		
              Hardware requirements
            


            		
              OS Requirements
            


            		
              Testing
            


          


        


        		
          Tutorials
          
            		
              Clustering
              
                		
                  Multi-view KMeans
                


                		
                  Assessing the Conditional Independence Views Requirement of Multi-view KMeans
                


                		
                  Multi-view vs. Single-view KMeans
                


                		
                  Multi-view Spectral Clustering
                


                		
                  Assessing the Conditional Independence Views Requirement of Multi-view Spectral Clustering
                


                		
                  Multi-view vs Single-view Spectral Clustering
                


                		
                  Multi-view Spherical KMeans
                


                		
                  Multi-view vs Single-view Spherical KMeans
                


                		
                  Using the Multi-view Clustering Algorithm to Cluster Data with Multiple Views
                


                		
                  Multi-view Vs Single-view Visualization and Clustering
                


              


            


            		
              Semi-Supervised
              
                		
                  Co-Training 2-View Semi-Supervised Classification
                


                		
                  Cotraining classification performance in simulated multiview scenarios
                


                		
                  Co-Training 2-View Semi-Supervised Regression
                


              


            


            		
              Embedding
              
                		
                  Generalized Canonical Correlation Analysis (GCCA)
                


                		
                  GCCA vs PCA
                


                		
                  Kernel CCA (KCCA)
                


                		
                  Kernel CCA: ICD Method
                


                		
                  Deep CCA (DCCA)
                


                		
                  CCA Variants Comparison
                


                		
                  Multiview Multidimensional Scaling (MVMDS)
                


                		
                  MVMDS vs PCA
                


                		
                  Omnibus Embedding for Multiview Data
                


                		
                  SplitAE Embeddings on multiview MNIST data
                


                		
                  Predicting views using SplitAE
                


              


            


            		
              Decomposition
              
                		
                  Angle-based Joint and Individual Variation (AJIVE) Explained
                


                		
                  Multiview Independent Component Analysis (ICA) Tutorial
                


                		
                  Group ICA: a tutorial
                


              


            


            		
              Pipeline
              
                		
                  Integrating mvlearn with scikit-learn
                


                		
                  ViewTransformer
                


                		
                  Mergers
                


                		
                  Pipeline example: group-ICA
                


              


            


            		
              Plotting
              
                		
                  Using quick_visualize() to quickly understand multi-view data
                


                		
                  Plotting Across 2 Views
                


              


            


            		
              Test Dataset
              
                		
                  Loading and Viewing the UCI Multiple Features Dataset
                


                		
                  Multiview Data from Gaussian Mixtures
                


                		
                  Multi-view Vs Single-view Visualization and Clustering
                


              


            


          


        


        		
          Reference
          
            		
              Clustering
              
                		
                  Multiview Spectral Clustering
                


                		
                  Co-Regularized Multiview Spectral Clustering
                


                		
                  Multiview K Means
                


                		
                  Multiview Spherical K Means
                


              


            


            		
              Semi-Supervised
              
                		
                  Cotraining Classifier
                


                		
                  Cotraining Regressor
                


              


            


            		
              Embedding
              
                		
                  Generalized Canonical Correlation Analysis
                


                		
                  Kernel Canonical Correlation Analysis
                


                		
                  Deep Canonical Correlation Analysis
                


                		
                  Omnibus Embedding
                


                		
                  Multiview Multidimensional Scaling
                


                		
                  Split Autoencoder
                


                		
                  DCCA Utilities
                


                		
                  Dimension Selection
                


              


            


            		
              Decomposition
              
                		
                  Multiview ICA
                


                		
                  Permutation ICA
                


                		
                  Group ICA
                


                		
                  Group PCA
                


                		
                  Angle-Based Joint and Individual Variation Explained (AJIVE)
                


              


            


            		
              View Construction
              
                		
                  Random Gaussian Projection
                


                		
                  Random Subspace Method
                


              


            


            		
              Model Selection
              
                		
                  Cross Validation
                


              


            


            		
              Compose
              
                		
                  AverageMerger
                


                		
                  ConcatMerger
                


                		
                  SimpleSplitter
                


              


            


            		
              Preprocessing
              
                		
                  ViewTransformer
                


              


            


            		
              Multiview Datasets
              
                		
                  UCI multiple feature dataset (located here)
                


                		
                  Data Simulator
                


              


            


            		
              Plotting
              
                		
                  Quick Visualize
                


                		
                  Crossviews Plot
                


              


            


            		
              Utility Functions
              
                		
                  IO
                


              


            


          


        


        		
          Contributing to mvlearn
          
            		
              Submitting a bug report or a feature request
              
                		
                  How to make a good bug report
                


              


            


            		
              Contributing Code
              
                		
                  Pull Request Checklist
                


              


            


            		
              Guidelines
              
                		
                  Coding Guidelines
                


                		
                  Docstring Guidelines
                


              


            


            		
              API of mvlearn Objects
              
                		
                  Estimators
                


                		
                  Additional Functionality
                


              


            


          


        


        		
          Changelog
          
            		
              Version 0.4.0
              
                		
                  mvlearn.compose
                


                		
                  mvlearn.decomposition
                


                		
                  mvlearn.model_selection
                


                		
                  mvlearn.preprocessing
                


              


            


            		
              Version 0.3.0
            


            		
              Patch 0.2.1
            


            		
              Version 0.2.0
            


            		
              Version 0.1.0
            


          


        


        		
          License
        


      


    
  

_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_11_2.png





_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_11_4.png
Multi-view Clustering Results View 1

Multi-view Clustering Results View 2






_images/tutorials_cluster_MVKMeans_MultiviewKMeans_Tutorial_9_1.png
Multi-view KMeans Clusters View 1 Multi-view KMeans Clusters View 2






_images/tutorials_cluster_MVKMeans_MultiviewKMeans_Tutorial_9_3.png
True Labels View 1 True Labels View 2






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_10_2.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_10_4.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_7_2.png
True Labels View 1 True Labels View 2






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_ComplexData_7_4.png
Multi-view Clustering Results View 1

Multi-view Clustering Results View 2

a
o @
cce -
EE—
[

PRy

&

e






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_12_2.png
Ground Truth View 2

Ground Truth View 1






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_12_4.png
Multi-view Clustering View 2

Multi-view Clustering View 1






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_14_2.png
Ground Truth View 1 Ground Truth View 2

P






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_16_4.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_13_0.png
Component 2

Ground Truth

0064

0044

0024

0004

0024

0044

006

0,08 —0.06 -0.04 0.02 000 002 004
Component 1






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_14_4.png
Multi-view Clustering View 1 Multi-view Clustering View 2






_images/tutorials_cluster_MVKMeans_MultiviewKmeansValidation_SimulatedData_16_2.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_8_3.png





_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_11_1.png
Ground Truth View 1 Ground Truth View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_13_1.png
Component 2

Multi-view Clustering

0064

0044

0024

0004

0024

0044

006

0,08 —0.06 -0.04 0.02 000 002 004
Component 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralClustering_Tutorial_8_1.png





_static/plus.png





_static/mvlearn-logo-transparent-white.png





_static/up-pressed.png





_static/up.png





_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_12_1.png
Matlab Implementation View 2

Matlab Implementation View 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_15_1.png





_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_11_3.png
Multi-view Clustering View 2

Multi-view Clustering View 1






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_8_1.png
Ground Truth View 1

Ground Truth View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_8_3.png
Multi-view Clustering View 1

Multi-view Clustering View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_15_3.png
Multi-view Clustering View 1 Multi-view Clustering View 2

T
i






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_16_1.png
Matlab Implementation View 1 Matlab Implementation View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_ComplexData_9_4.png
Multi-view Clustering Results View 1

Multi-view Clustering Results View 2

]
T

o T
f'






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidationMatlabComparison_9_1.png
Matlab Implementation View 1

Matlab Implementation View 2






_images/tutorials_cluster_MVSpectralClustering_MultiviewSpectralValidation_ComplexData_9_2.png
True Labels View 1 True Labels View 2

L .






_static/minus.png





_static/file.png





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_28_1.png
2 Component PCA of Full View 1 (Fourier Coefficients) Training Data 2 Component PCA of Full View 2 (Profile Correlations) Training Data
06

o Classo o Classo
o Class1 o Class1
04
. 1000
02
500
00
.
02 o
o
.
04 . .

s 04 82 g0 02 o4 06 100 S00 [] ED 1000 1500





_images/tutorials_semi_supervised_cotraining_regression_exampleusage_6_0.png





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_30_0.png
Semi-Supervised Classification Accuracy with

= CTClassifier (default Naive Bayes)

£ 10

H

809

8

8 o8

s Fourier Coefficients Only.

S " sklearn Gaussian Naive Bayes
g o7 Profile Correlations Only:

2 7 sklearn Gaussian Naive Bayes
<06 Using Both Views:

) ~ multiview CTClassifier (default)
H 002 004 006 o008  0lo

Labeled Data Proportion





_static/ajax-loader.gif





_static/comment-close.png





_static/comment-bright.png





_static/down-pressed.png





_static/comment.png





_static/down.png





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_14_0.png
When One View is Completely Redundant
CoTraining Performs Worse Than
single View or View Concatenation

ogs] —mm—————

080 — View1
— View2
—— Naive Concatenated
075 — multiview
070

0 2 0 75 100 125 130 15 200
Iterations of Co-Training

Average Accuracy Over 20 Randomizations.





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_13_1.png
One Randomization of View 1

One Randomization of View 2

o Classo
o Class1
98 Labeled Class 0

9§ Labeled Class 1 7

*o aa,

PiF

o Classo
o Class1

98 Labeled Class 0

9§ Labeled Class 1 I






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_17_0.png
Average Accuracy Over 20 Randomizations.

085

080

075

070

065

060

055

050

When One View is Uninformative
CoTraining Performs Worse Than Single View

View 1
View 2

Naive Concatenated
multiview

0 2 0 75 100 125 130 15 200
Iterations of Co-Training





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_16_1.png
One Randomization of View 1

One Randomization of View 2

o Classo
o Class1
98 Labeled Class 0

9§ Labeled Class 1 7

*o aa,

PiF

o Classo .
o Class1

98 Labeled Class 0 |
9§ Labeled Class 1






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_20_0.png
100

095

090

085

Average Accuracy Over 20 Randomizations.

When Labeled Data is Extremely Clean
CoTraining Outperforms Single Views
but Naive Concatenation Performs Better

View 1
View 2

Naive Concatenated
multiview

5 50 75 100 125 150 175 200
Iterations of Co-Training





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_19_1.png
One Randomization of View 1

One Randomization of View 2

Labeled Class 0
Labeled Class 1

o Class1
98 Labeled Class 0
9§ Labeled Class 1






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_23_0.png
When Labeled Examples are Not Representative

g CoTraining Does Poorly, as Expected
gom — View1

E 070 — View2

2 —— Naive Concatenated
£ oes — multiview

5 060

8

Z 055

g 0s0

2

& o045

H 0 2 0 75 100 125 130 175 200

Iterations of Co-Training





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_22_1.png
One Randomization of View 1

One Randomization of View 2

Class 0
Class 1

Labeled Class 0
Labeled Class 1

Class 0
Class 1

Labeled Class 0
Labeled Class 1






_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_26_0.png
When Both Views Have Overlapping Data

g CoTraining Performs with Chance, as Expected
£ 0502

& 0500 — View1

g — view?

g 0408 —— Naive Concatenated
> — multiview

g 0as6

< 0494

)

2 0 25 s 75 100 15 150 175 200

Iterations of Co-Training





_images/tutorials_semi_supervised_cotraining_classification_simulatedperformance_25_1.png
One Randomization of View 1

One Randomization of View 2

o . e casso
sap o Class1

5, % Labeled Class 0
v 3 Labeled Class 1

o Classo .
o Class1

98 Labeled Class 0 |
9§ Labeled Class 1






